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ABSTRACT

Two New Algorithms For Classical Problems 
in Computer Science

by

John G. Howe

Dr. Evangelos Yfantis, Examination Committee Chair 
Professor o f Computer Science 

University o f Nevada, Las Vegas

This thesis presents two algorithms dealing with problems in two classic 

algorithm areas in computer science. The first algorithm presents a simple solution to the 

selection problem. The sequential computing model form o f this selection algorithm is 

presented first followed by a general parallel computing model version.

The second algorithm is a relatively simple bookkeeping approximation solution 

to the Steiner tree problem in graphs. The problem presented deals with determining the 

shortest tree connecting Steiner nodes in a graph that has no direct connections between 

the Steiner nodes. Both algorithms are described and analyzed in detail with an 

appropriate running example to illustrate the actions o f  the algorithms.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

TABLE OF CONTENTS

ABSTRACT................................................................................................................................iii

LIST OF TABLES....................................................................................................................... v

LIST OF FIGURES...................................................................................................................vii

ACKNOWLEDGEMENTS.................................................................................................... viii

CHAPTER 1 BIN SELECTION ALGORITHM...................................................................1
1.1 The Selection Problem............................................................................................... 2
1.2 The Classic Algorithm Solution............................................................................... 3
1.3 The Bin Selection Algorithm Solution.................................................................... 4
1.4 A Common Illustrating Example..............................................................................6
1.5 The Sequential Computing Model Version.............................................................6
1.6 Basis and Correctness o f the Algorithm................................................................ 16
1.7 Performance Analysis.............................................................................................. 19
1.8 The Parallel Computing Model Version................................................................20
1.9 Modifications, Other Uses, and Future Work.......................................................38
1.10 Conclusion................................................................................................................ 43

CHAPTER 2 STEINER TR EES...........................................................................................45
2.1 Previous W ork...........................................................................................................45
2.2 A New Steiner Tree Algorithm................................................................................46
2.3 General Description.................................................................................................. 47
2.4 Basic Definitions...................................................................................................... 49
2.5 An Example Problem................................................................................................50
2.6 The Required Data Structures..................................................................................51
2.7 The Algorithm ...........................................................................................................55
2.8 Performance Analysis.............................................................................................. 80
2.9 Future W ork...............................................................................................................81
2.10 Conclusion................................................................................................................. 82

APPENDIX A A SECOND WORKED EXAMPLE OF THE STEINER ALGORITHM 
......................................................................................................................................................83

BIBLIOGRAPHY.......................................................................................................................99

VITA.......................................................................................................................................... 102

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

LIST OF TABLES

Table 1.1 Bin contents after the first pass through S  has been completed...................... 12
Table 1.2 Final accumulator values for the first pass through S...................................... 13
Table 1.3 Range o f eliminated elements on first pass by K  value and the bin location

o f  the desired K* element..................................................................................15
Table 1.4 Positions in S  where each processor is to start copying the elements o f S  to

local memory.............................  28
Table 1.5 Bin contents, by processor, after the first pass through S  has been

completed........................................................................................................... 29
Table 1.6 Local memory bin element counts and shared memory accumulator values

after the first pass element distribution has been completed.........................30
Table 1.7 The order in which the processors write their bin counter values to the

accumulators in shared memory.......................................................................31
Table 1.8 Final results of steps 2 and 3 from the first pass through S .............................33
Table 1.9 Final accumulator values for the first pass through S......................................34
Table 1.10 Range of eliminated elements on first pass by K  value...................................34
Table 2.1 The Steiner Node List (SNL) after initialization..............................................52
Table 2.2 The Non-Steiner Node List (NSNL) after initialization...................................53
Table 2.3 The first Pick List (PL) after initialization........................................................53
Table 2.4 The Subtree List (SL) after initialization.......................................................... 54
Table 2.5 The Select/Connect Table (SCI) after initialization....................................... 54
Table 2.6 The data structures after the first Steiner Node Selection step.......................62
Table 2.7 The data structures after the second Steiner Node Selection step..................63
Table 2.8 The data structures after the third Steiner Node Selection step......................64
Table 2.9 The data structures after the Single Edge Connection step and a traversal o f

the subtrees........................................................................................................ 71
Table 2.10 The data structures after the Non-Steiner Vertex Selection step and a

traversal o f the subtrees.................................................................................... 77
Table A. 1 The Steiner Node List (SNL), the Non-Steiner Node List (NSNL), the Pick

List (PL), and the Subtree List (SL) after the first Steiner Node selection
step has been completed................................................................................... 84

Table A.2 The Select/Connect Table (SCT) after the first Steiner Node selection step
has been completed........................................................................................... 85

Table A. 3 The data structures (SNL, NSNL, PL, and SL) after the second Steiner
Node selection step has been completed........................................................ 86

Table A.4 The Select/Connect Table (SCT) after the second Steiner Node selection
step has been completed................................................................................... 87

Table A.5 The data structures (SNL, NSNL, PL, and SL) after the third Steiner Node
selection step has been completed................................................................... 88

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table A.6 

Table A.7 

Table A. 8 

Table A.9 

Table A. 10 

Table A. 11 

Table A. 12 

Table A. 13 

Table A. 14

The Select/Connect Table (SCT) after the third Steiner Node selection step
has been completed............................................................................................ 89
The data structures (SNL, NSNL, PL, and SL) after the fourth Steiner Node
selection step has been completed...................................................................90

The Select/Connect Table (SCT) after the fourth Steiner Node selection
step has been completed.................................................................................... 91

The data structures (SNL, NSNL, PL, and SL) after the single edge
connection step has been completed................................................................ 92

The Select/Connect Table (SCT) after the single edge connection step has
been completed................................................................................................... 93
The data structures (SNL, NSNL, PL, and SL) after the first non-Steiner
vertex selection step has been completed........................................................94
The Select/Connect Table (SCT) after the first non-Steiner vertex selection
step has been completed.................................................................................... 95
The data structures (SNL, NSNL, PL, and SL) after the second non-Steiner
vertex selection step has been completed........................................................96
The Select/Connect Table (SCT) after the second non-Steiner vertex 
selection step has been completed....................................................................97

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Figure 1.1 

Figure 1.2

Figure 1.3

Figure 1.4 
Figure 2.1

Figure 2.2 
Figure A. 1

Figure A.2

LIST OF FIGURES

Initial list S  o f data items for the example illustrating the use o f  the Bin
Selection Algorithm............................................................................................... 6
Initial determination o f the number o f bins and the bin ranges for the 
example illustrating the use o f  the sequential version o f the Bin Selection
Algorithm .............................................................................................................. 11
Initial determination o f the number o f processors and bins and the bin 
ranges for the example illustrating the use of the parallel version o f the Bin
Selection Algorithm.............................................................................................27
Copy the selected bin contents (bin 0) to shared memory..............................36
Example graph G with Steiner Nodes (donuts) used to illustrate the
operation of this algorithm................................................................................. 51
The solution tree R  generated by the algorithm...............................................81
The graph G for the Appendix A example further illustrating the operation
o f the Steiner algorithm...................................................................................... 83
The solution tree R  generated by the algorithm............................................... 98

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ACKNOWLEDGEMENTS 

I would like to thank Dr. Kia Makki, Ph.D., for his introduction and instruction 

into the fascinating world o f  algorithms. His depth of knowledge and ability to teach this 

material to his students in a manner so as to inspire them to further investigate this field 

was instrumental in my being able to produce this work. Furthermore, it was Dr. Makki 

who first proposed the ideas that were later developed into the two algorithms presented 

here. Without his inspiration and guidance I would never have though to look for 

alternative solutions to classical computer science problems, let alone gone on to develop 

two such algorithmic solutions myself. Thank you Dr. Maklri, wherever you are.

I would also like to thank Dr. Evangelos Yfantis, Ph.D., for his unwavering 

support and encouragement during some very difficult times. Originally starting my 

work under Dr. Yfantis, he was gracious and supportive when I later changed to work 

under Dr. Makki, but his willingness to reassume the positions of advisor and thesis 

committee chairman was beyond value and the call o f duty. Thank you just does not 

adequately express the gratitude I feel for such support.

Finally, I would like to thank everybody else who has supported me over the 

years I have been at UNLV. In particular, I would like to thank the members o f  my thesis 

committee for their forbearance during some difficult personal and professional times and 

for sticking with me while I got through all o f this. And always, I would like to thank my 

parents for their support without which I would never have had the opportunity to start an 

advanced degree program, let alone to have finally finished one.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 1

BIN SELECTION ALGORITHM

A thorough knowledge o f algorithm development and analysis is an important 

part o f any computer science education. Depending upon the goals o f the course any 

number o f classical algorithms may be studied. One such algorithm is the Selection 

Problem. An 0(N ) solution to this problem has been available for many years [3] with a 

number o f incremental improvements having been made since its introduction. It has 

been observed by many who have worked with this problem that further improvement of 

the time bound o f the classic algorithm could probably be achieved.

Searching for such an improvement resulted in the creation of the Bin Selection 

Algorithm. While looking for ways to preprocess the data provided to the classic 

algorithm it was discovered that one such preprocessing operation, similar to the bucket 

sort, enabled the elimination of unneeded data items while ensuring that the desired 

element was not one o f  the items eliminated. Further examination o f this 'preprocessing' 

step revealed that continued use of this method would, in fact, solve the selection 

problem. Once it was confirmed that this method would always generate a solution, a 

formal algorithm was generated replacing, in its entirety, the classic solution to the 

selection problem.
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The classic solution to the selection problem is 0(kN ), where k  is approximately 

2.5. Under most circumstances, the BSA is a well-behaved algorithm whose time bound 

is also O(kN), where k  usually lies between 1.0 to approximately 1.7. In the worst case, 

the unmodified behavior o f this algorithm becomes 0 (n 2). However, this case can be 

easily detected and subsequently handled so that the overall cost o f  the algorithm is still 

linear. Depending upon the method chosen for dealing with this situation, a final value o f 

k  will often lay between 2.0 to 3.0.

The Bin Selection Algorithm  (BSA) is a substantially easier algorithm to teach, 

understand, and program. It was originally developed as an algorithm for parallel 

machines. However, it is such a simple algorithm that a  sequential implementation is 

trivial, primarily involving the removal o f steps unique to parallel computing systems.

In this chapter, the Selection Problem is formally introduced. This is followed by 

a brief description o f the classical solution to the problem. The sequential version o f the 

Bin Selection Algorithm is then presented and the overall algorithm and its behavior is 

described and analyzed in depth. The parallel version o f the BSA is described next with 

attention being paid specifically to those issues unique to a parallel system 

implementation. Finally, this is followed by future work, a discussion of the various 

modifications, and additional uses o f this algorithm.

1.1 The Selection Problem

The Selection Problem has a wide variety o f applications in computer science and 

statistics. O f particular interest is the special case o f finding the median. The Selection 

Problem, simply stated, is:
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Given the sequence S o fN  elements and an integer K, where 1 < K <  N , f in d  the 

K* largest or smallest element in S.

The Selection problem has been well studied in the literature [13,15]. An optimal 

sequential divide-and-conquer algorithm exists for its solution which runs in O(n) time in 

the worst case [3]. Also, Floyd and Rivest [7] discuss the sampling approach that finds 

the median in 1.5n expected comparisons. Recently, a number o f parallel algorithms 

have been devised for this problem [1,2,5,13,18], Akl [1] was the first to come up with a 

cost optimal parallel version o f  the algorithm given in [3],

1.2 The Classic Algorithm Solution

The classic solution to the selection problem has been well studied and presented 

in many algorithms books. Therefore, only a cursory presentation will be made here. 

The reader of this work is encouraged to refer to virtually any work on computer 

algorithms should a more detailed presentation of the classic algorithm be desired.

In general, like the Bin Selection Algorithm, the classic solution seeks to partition 

the data set such that the desired K* element can be found directly (rare but possible) or 

that some o f the elements in the set can be eliminated from further consideration during 

the search for K. This is accomplished by creating a series o f  subsets containing an odd 

number o f elements and then sorting the elements in each subset. Using the median 

values from all o f the subsets, a 'median o f  medians' value is determined.

The median o f medians value is critical to the partitioning process o f the classic 

algorithm. By reordering the sorted subsets around this value it can be determined which
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elements are known to be greater than the median o f medians and which elements are 

known to be smaller. I f  the number o f elements known to be greater is equal to the value 

K  - 1  then the median o f  medians element is the desired K* element. If the number o f 

elements known to be greater is less than K  then these elements can be discarded since 

the K* element being sought cannot possibly be in this subset.

In most implementations, the classic algorithm is repeated on the new, reduced 

data set once the elements mentioned above have been discarded. Modifications to the 

algorithm exist that allow for the removal o f another group o f  elements known to be 

smaller than the median o f  medians under conditions similar to those described above for 

the larger elements. During each iteration, a similar number o f elements are removed 

from further consideration until the K* element is found directly or until the number of 

elements remaining is such that the desired element can be found by sorting the elements 

and picking it directly.

The number o f  elements eliminated during each iteration is, at best, 

approximately thirty percent (30%) in the case o f discarding only the larger elements. If  

both the larger and smaller element subsets are eliminated then this value rises to 

approximately fifty percent (50%). The exact number o f elements discarded during any 

single iteration o f the classic algorithm is due to the location o f  the median of medians 

value in the data set and the size o f the subsets used by the algorithm.

1.3 The Bin Selection Algorithm Solution

The Bin Selection Algorithm (BSA) allows for the selection o f the K111 largest, or 

smallest, element in a list without sorting any of the elements in the list, S. Instead, the
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range o f possible element values is dlivided among a series o f bins such that the subranges 

assigned to the bins is disjoint. T hen it uniquely places each element in the bin whose 

subrange includes that particular element's value. A count o f the number o f elements in 

each bin is kept during the placem ent process. When all o f  the elements o f S  have been 

placed in the appropriate bin, the bin that contains the desired K^1 element can be 

determined. If  the indicated bin ccontains more than one element, this process can be 

repeated. If the count o f elements im the bin is sufficiently low then the elements can be 

sorted and the K* element picked trivially.

In general, the BSA operates by discarding all elements o f  S  that have been 

determined, conclusively, to not be th e  K111 element. Thus each succeeding iteration of 

this algorithm operates on a subset o f  those members o f  S  that were present during the 

preceding iteration. Dependent upom the distribution of the elements in S  and the ranges 

assigned to the bins, an average elenuent removal rate o f 60% to 80% per iteration is not 

unreasonable and can be easily achieved.

This is accomplished, in part, because the BSA allows for the incorporation of 

any knowledge about the list that m ay be available. For example, simply knowing the 

actual minimum and maximum valuers in the list serves to restrict the number of bins that 

will be needed. If  some knowledge o f  the distribution o f the values is available, then the 

number o f bins collecting a certaim range of values can be increased or decreased 

accordingly. Both o f these items m ake it possible to discard more elements per iteration 

than would be possible if this information were not known.
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1.4 A Common Illustrating Example

To illustrate the performance o f this algorithm during each step, the following 

example is provided. A set o f  integers S  is given as shown below in Figure 1.1. The size 

o f S, « = |<S| is 25.

3 15 49 17 79 62 31 95 26 51 99 7 37

75 33 57 1 82 11 43 22 87 55 91 14

Figure 1.1 Initial list S' o f  data items for the example illustrating the use o f the Bin
Selection Algorithm.

1.5 The Sequential Computing Model Version

The sequential version o f the BSA is an uncomplicated and easy to implement 

algorithm. Since there is only one processor and memory resource available, there is no 

need for the processor synchronization pauses and memory conflict avoidance schemes 

that will be required in the parallel computing model version.

1.5.1 Resource Requirements 

With the sequential version o f the BSA the only resource that needs to be 

managed is memory. The maximum amount o f memory needed by this algorithm 

assumes that the implementer desires to keep everything in memory during processing. 

In this case, enough memory to hold the entire list, S, bin storage for the members o f  S, 

and one accumulator per bin is required. Therefore, the maximum amount o f memory
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required by this algorithm is (2 x S ) +{bins + 1). The extra accumulator is used during the 

summation process when the algorithm determines the location o f the desired K111 element 

o f S.

The minimum amount o f  memory required by the algorithm is the amount needed 

for the accumulators, {bins + 1). In this event, it is assumed that the storage for the list, S, 

and as well as the contents o f  the individual bins is provided for elsewhere. The actual 

number o f bins required for a solution using the BSA will be determined in the 

initialization step as described in Section 1.5.4.

1.5.2 Algorithm Description

The sequential BSA is an six step solution to the general selection problem. 

These steps can be summarized as follows:

Step 0 - Initial Assumptions 

Step 1 - Initialization 

Step 2 - Element Distribution 

Step 3 - Locate the K* Element Bin 

Step 4 - Process/Terminate Logic 

Step 5 - Result(s) Processing

Each step is described in detail below. Throughout this discussion the common 

example will be used to illustrate the operations performed during each step o f  the 

sequential version o f the algorithm.
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1.5.3 Step 0 - General Assumptions and Knowledge

For the purpose o f this discussion, it is assumed that the following conditions

exist:

• The list is finite.

• Every element in the list S' is unique.

• The bounding values o f the elements in S  are either known or can be estimated 

with reasonable accuracy.

• All array or list indices start at zero.

• All o f the memory requirements mentioned earlier have been met.

Only the first assumption is actually required by this algorithm. Obviously, if the 

list is not finite then no solution is possible. The remaining four assumptions have been 

made so that the description and discussion o f the BSA in the following sections can be 

simplified. As will become clear from the rest of this section, none of the remaining 

assumptions must be met for the algorithm to function properly.

The assumptions about element uniqueness and bounds knowledge, while useful 

in simplifying this discussion, are not absolute requirements for the successful use of the 

BSA since initial knowledge o f the actual contents of the list, <S, is not required for a 

solution using this algorithm. The BSA can handle the lack o f bounds knowledge at the 

expense o f requiring more iterations to reach the solution. No additional memory or bins 

are needed.

Furthermore, the elements in the list, S, need not be unique. It only needs to be 

guaranteed that duplicate elements in the list, S, will be placed in the same bin. If  it is 

necessary to determine which instance o f a duplicated list member is the desired element
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then the manner in which the elements are placed in their respective bins can be easily 

modified so that this information can be preserved during Step 2.

The last two assumptions stated above have been made simplify the mechanics of 

the algorithm. The array and list index start value reflects the method used to place the 

elements in their respective bins and may change based upon the placement algorithm 

used by the implementer. Storing all data and results in memory also simplifies this 

presentation. Appropriately modified, the BSA can handle the violation o f any or all of 

these assumptions easily. Further discussion o f the modifications mentioned in this 

section is presented in Section 1.9.

1.5.4 Step 1 - Initialization

During this stage o f  the BSA, the overall structure o f  the solution to the given 

problem is generated. O f importance to the efficient operation o f  the algorithm is the 

determination o f the total number o f  bins needed. From this item the rest o f the required 

initial data can be generated, namely, the bin content ranges and the element placement 

value. These items are discussed below and illustrated with the example in Figure 1.2.

1.5.4.1 Determining the Number of Bins Required

Based upon the bounds information derived from S  in step 0, a number of bins 

will be generated. The minimum number o f bins recommended is the base 2 logarithm of 

the maximum possible element value o f S. This value was originally selected as a 

starting point for no particular reason but has been proven to be quite workable under 

normal circumstances. Actually, any number o f bins greater than one will work if  it can
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be guaranteed that at least two or the bins contain two or more members o f  5  during each 

pass through the algorithm.

In general, however, the more bins that can be used the less time is required to 

arrive at the desired solution since more o f the elements in S  can be eliminated during 

each pass through the algorithm. Thus, the maximum number o f  bins to use depends on 

several conditions. If  sufficient memory is available then a number o f bins equal to the 

range o f  potential member values o f  S' is usually desirable. In this case, each bin 

represents a single value from the range and will contain only those members o f S  o f  that 

value. Finding the desired K* element in this event is trivial since it will always be found 

during the first pass through the algorithm.

The size o f the list, S, may also affect the number o f bins needed. When the list is 

very large it may be necessary, if  possible, to double the number o f bins indicated by the 

above equation in order to maintain satisfactory performance o f the algorithm. 

Obviously, the number of bins cannot exceed the range o f potential member values as 

described above. Further simulation o f  the BSA is required before a definitive answer 

can be offered regarding the optimal minimum and maximum number o f bins to use.

1.5.4.2 Element Placement Method and Bin Range Determination

As presented here, the BSA uses the integer division function to place the 

elements o f S' in the appropriate bin. In reality, any function that will allow every 

element o f  S  to be uniquely placed in the bins will be satisfactory. This function will 

typically be driven by the type o f data element (integer, real, etc.) that is contained in S.
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To determine the divisor value required, we take the maximum possible element 

value and divide it by the number o f  bins that will be used by the algorithm to generate a 

solution for this particular list S. The ceiling o f this result is the individual bin range size 

and is used to determine the range o f  elements, by value, that each bin may contain. This 

is shown in Figure 1.2 for the example illustrating the use o f the BSA.

To ensure that a maximum valued element will not be placed in a  nonexistent bin, the 

divisor value just obtained is multiplied by the number o f  bins and the result is compared 

to the maximum possible element value. If  this result is greater than or equal to the 

maximum possible element value then the number of bins is sufficient. If the result is 

equal to the maximum possible element value then an extra bin must be generated. Only 

maximum valued elements will eventually be placed in this bin.

Let S  = 100 and S  - =1v ^  max ****** w min

Let b = ["log, S m3x "j = ["fog, 100] -  7 bins required

Ar = [ S „ . / * l = l S  

Thus, the bin ranges are: BinO 0 - 1 4
Bin 1 1 5 -2 9
Bin 2 3 0 -4 4
Bin 3 4 5 -5 9
Bin 4 6 0 -7 4
Bin 5 7 5 -8 9
Bin 6 90 - 105

Figure 1.2 Initial determination o f the number of bins and the bin ranges for the 
example illustrating the use o f the sequential version of the Bin Selection Algorithm.
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1.5.4.3 Indirect Initialization

Should the situation occur where no information exists about the size of, or the 

range o f values in, S  then the implementer has two choices with respect to how the 

needed information is obtained. First, obviously, the implementer can make a guess as to 

the bin ranges and the number o f  bins to be used. Efficiency will definitely be sacrificed 

unless the guess is accurate but a solution will be generated if  all o f the elements in S  can 

be placed in a bin (see the earlier discussion about maximum valued elements). If  a 

guess is not possible, or desirable, then an initial pass through S  can be made that will 

generate the needed information. Further discussion o f this modification and others can 

be found in Section 1.9.

1.5.5 Step 2 - Element Distribution 

Using the information generated in Step 1, the elements in S  are placed into the 

appropriate bin and the corresponding accumulator is incremented. In the case of the 

illustrating example provided, integer division, using the value of br as shown in Figure

1.2 for the divisor, is used to place the members of S  in the appropriate bins.

Table 1.1 Bin contents after the first pass through S  has been completed.

Contents o f Bin #

0 1 2 3 4 5 6
3 15 31 49 62 79 95
7 17 37 51 75 99
1 26 33 57 82 91

11 22 43 55 87
14
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For example, the first member o f S, the value 3, is placed in bin 0 since 3/15 = 0 , 

where br = 15. The member 49 is placed in bin 3 because 49/15 = 3. The member 87 is 

placed in bin 5 since 87/15 = 5 . Table 1.1 shows the contents o f  each bin once all o f the 

members o f S  have been examined.

As each member o f  S  is placed in a bin, the accumulator corresponding to that 

particular bin is incremented and reflects the total number o f  elements that have been 

placed in the bin. The accumulator value for each bin once all o f  the members of S  have 

been examined is shown in Table 1.2.

Table 1.2 Final accumulator values for the first pass through S.

Bin 0 1 2 3 4 5 6

Total 5 4 4 4 1 4 3

1.5.6 Step 3 - Locate the K* Element Bin 

Once all o f the members o f  S  have been placed in a bin, we can determine which 

bin contains the desired K* element. This is accomplished by starting at the appropriate 

end o f the list o f  accumulator values and summing their values until the number of 

elements in the sum equals or exceeds the value of K. The bin that is associated with the 

last accumulator value added to the sum will be the bin that contains the element.

If the K* smallest element in S' is desired then the summation o f  accumulator 

values starts with bin 0, the bin holding the lowest valued elements o f S. The
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accumulator value o f each succeeding bin is then summed until the total equals or 

exceeds the value o f K. In a similar manner, the K* largest element can be found by 

starting with the bin holding the largest valued elements o f  S. When the sum m ation 

process stops, the bin that contains the K* element has been determined. The desired 

element is located in the last bin whose accumulator value was added to the sum.

For example, if  we are searching for the 7th largest element o f S, then starting with 

bin 6 we sum the accumulator values, moving down the list o f  bins until the sum equals 

or exceeds 7. In this case, bin 6 only holds 3 elements so the K  = 7th largest element 

cannot be in bin 6. Bin 5 holds 4 elements and the total number o f elements encountered 

in our traversal o f the bin accumulator values is now 3 + 4  = 7. This result equals the 

value we are searching for, 7. Therefore, we have found the bin containing the desired 

element and can discard the contents o f all o f the other bins, a total o f 21 elements or 

84% of the members o f S. Tablel.3 illustrates the percentage elimination of elements o f 

S  from further consideration using the illustrating example for various values o f K.

1.5.7 Step 4 - Process / Terminate Logic

With the location o f the K* element known, the elements that are stored in the 

other bins can now be discarded. The proof of this claim is given in Section 1.6. The 

value o f K may need to be adjusted, if  necessary, to reflect the removal o f the discarded 

elements so that the correct element will be selected relative to the original list S.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

15

Table 1.3 Range o f eliminated elements on first pass by £  value and the bin location 
o f the desired K* element.

£
Value Location

Elements

Remaining Eliminated

1 < £ < 5 BinO 5 20 (80%)

6 < £ <  9 Bin 1 4 21 (84%)

10 < £  <13 Bin 2 4 21 (84%)

14 < £ < 1 7 Bin 3 4 21 (84%)

II i—* 00 Bin 4 1 24 (96%)

19 < £ < 2 2 Bin 5 4 21 (84%)

23 < £  < 25 Bin 6 3 22 (88%)

At this point in the BSA only one o f  two situations can possibly exist. Obviously, 

the bin known to hold the desired K* element has only one member o f S  contained 

therein. In this case, no further processing needs to be performed to find the element 

and the algorithm can proceed directly to Step 5 (see section 1.5.8).

Otherwise, more than one element remains in the indicated bin. One o f these 

elements is the K* element being sought. Should the number of elements remaining in 

the bin be small, less than 10 or so, then the elements can be sorted and the desired 

element determined trivially. The point at which the remaining elements should be sorted 

is left for the implementer to decide. The BSA will yield correct results without regard to 

the number o f  elements in 5  as will a simple sort and pick operation.

If  the decision is made to run the remaining elements through the BSA again then 

several adjustments must be made before Steps 2 and 3 can be repeated. First, the 

original members o f S  are replaced with the members now residing in the bin known to
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contain the K* element. Next, the accumulators must be initialized to zero and the 

initialization and setup information determined in Step 1 will need to be recalculated. 

However, these calculations must reflect the altered problem that now exists. Typically, 

the number o f bins needed will be reduced since a significant percentage o f  the original 

elements o f S  will have been eliminated. Also, the range of values o f the remaining 

elements o f 5  has likewise been reduced and may additionally limit the number o f bins 

needed for the next round o f the BSA.

1.5.8 Step 5 - Result(s) Processing

The processing done in this step is trivial if  only one K* element is to be found by 

the BSA. Only the value of the K* element and any statistical information gathered by 

the implementer needs to be output. However, with minor modification, this algorithm is 

capable o f returning multiple K* largest or smallest element values and providing 

additional information about the members o f the list, S. Further discussion of the 

modifications to the BSA required to implement this capability, as well as other 

algorithm modifications, are described in Section 1.9.

1.6 Basis and Correctness o f  the Bin Selection Algorithm

The basis for this algorithm rises from three simple facts.

1) When searching any list for the K* largest element there must exist K  -1  

elements larger than the K  element.

2) For the K* largest element o f a list o f size X  there must exist X  — K  elements 

that are smaller than the K* element.
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3) Since the list is finite and each element in the list is unique we can determine, 

or make an informed guess about, the minimum and maximum possible values 

for any particular list.

The proofs o f  the first two facts are both obvious and trivial. Fact one is true 

because to be the K* largest anything implies the existence o f  K  — 1 items that are larger 

than the K111 item. I f  fewer or more than K  — 1 items exist in S  that are larger than the K* 

element then the element selected cannot possibly be the largest element o f  S.

Likewise, fact two is true because to be the largest anything in a list o f X  

elements implies the existence o f X  — K  items that are smaller than the K* item. If 

fewer or more than X  — K  items exist in S  that are smaller than the K* element then the 

element selected cannot possibly be the K* largest element o f S. Similar arguments can 

be made when searching for a K* smallest element of S.

The third fact is derived from the basic assumptions that were made about the list 

S  and its member elements. Obviously, i f  the list is not finite then a solution will never 

be found. If  the implementer has any information about the nature of the elements in S, 

knowledge o f the valid range o f values to be expected from the elements in S  is the most 

commonly available. Even if  the implementer knows nothing about the valid range o f 

values expected, a single pass through the members o f S  recording the maximum and 

minimum values encountered will provide the needed data for the BSA.

In either case, exact knowledge o f  the range values is not required for the BSA to 

operate properly. The implementer need only guarantee that every element in 5  will be 

placed in a bin during the first pass o f the algorithm through S. So long as every member
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o f S  is accounted for during each pass, the BSA will be able to select the correct element 

from S. The adjustments that are made in Step 5 before making another pass through the 

remaining elements o f S  will insure that this requirement is always met. Should it not be 

possible to make such a guarantee then the maximum and minimum values o f the 

elements in S  must be determined as mentioned above before using the BSA.

The method used by the Bin Selection Algorithm to locate and identify the 

desired K* element makes use o f all three facts above to partition S  into three disjoint 

subsets, one o f which is known to hold the element. From the first two facts, it can be 

seen that if  we can identify which elements belong to the K  - 1  and X  -  K  subsets of the 

list and discard only the elements o f  those subsets then we will be left with the K111 

element. Sorting the list yields one such solution but it is costly and inefficient for all but 

the smallest lists.

The third fact provides the limits for the partitioning o f the elements in S. Using 

the maximum and minimum element values, a series o f contiguous, unique, and disjoint 

subranges can be created that will cover the entire range o f possible values o f the 

members o f S’. Direct assignment to a  single subrange will allow the partial ordering of 

the elements o f S  without having to make any element to element comparisons. A 'bin' is 

generated for each o f the subranges and each element of S is then placed into the bin 

whose subrange includes the value o f  that element. A count o f the number o f  elements 

placed into the bin is maintained during the placement process.

Once the placement process is complete, the bin containing the K* element can be 

determined. This is accomplished by simply summing the number o f elements contained
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in each bin until the sum equals or exceeds the value o f K. The last bin whose count was 

added to the total contains the K* largest element.

With the determination o f the location of the K* largest element the partitioning 

o f S  has been accomplished. By the virtue o f the first two facts stated above and the 

knowledge o f the location of the K* largest element, the remaining bins can be safely 

assigned to the K  - 1  and the X  — K  subsets. The contents o f  these bins can now be 

discarded because they do not contain the element that is being sought and will be of no 

benefit to the solution in future processing. By adjusting the value o f K, if  necessary, the 

BSA can be rerun on the remaining elements of S  until the K* element is found directly 

or until so few elements remain that sorting become feasible.

1.7 Performance Analysis 

The Bin Selection Algorithm, as described in earlier sections, behaves in a linear 

fashion under most circumstances. However, its actual overall behavior is totally 

dependent upon the distribution o f the elements in S  and the distribution of the subranges 

assigned to the bins. Any distribution o f elements and bin subranges that is uniform, or 

approximately uniform, will always result in linear algorithm behavior. The further the 

distribution o f  elements strays from the uniform, the worse the behavior o f the algorithm.

With a uniform, or near uniform, element distribution in S  and a uniform, or near 

uniform, subrange distribution among the bins, only a single pass will need to be made 

through all o f the elements of S. Each succeeding pass of the BSA operates upon an ever 

decreasing subset o f S  until the K* element is determined. In these cases, the time bound 

of the Bin Selection Algorithm is 0(kN), where the value o f k  has been found to typically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

20

lay between L0 and 1.7. These values correspond to an element discard rate of 60% or 

greater during each pass o f  the algorithm.

At its worst, the behavior o f  the Bin Selection Algorithm is 0 (N 2). In this 

circumstance, only a  single element o f  S  is discarded during each pass and, at most, 

N  —1 passes are required to locate the K* element This is an easily detectable situation. 

The modifications to the BSA required to account for this, and other, undesirable 

situations is discussed in Section 1.9.

While element distributions that can lead to 0 (N 2) behavior are highly unlikely to 

occur in most instances, convincing arguments can be presented as to the actual 

occurrence in real-world data o f such distributions. The simplest to visualize is an 

instance where most o f the data collected lies within a narrow range o f values but where a 

few values, valid or erroneous (depending upon the nature o f the data collected), expand 

the range of data values enormously. In such a case, the majority o f the uniformly 

generated subranges would be empty with only a few (or ju st one) containing a 

significant number o f  elements from S. Thus, the unmodified behavior o f the BSA would 

approach 0(N 2).

1.8 The Parallel Computing Model Version

The parallel version o f the Bin Selection Algorithm (pBSA) is a simple and 

adaptable parallel algorithm for the selection problem. The model o f parallel 

computation used is the concurrent-read exclusive-write (CREW) parallel random access 

machine (PRAM). Memory conflicts are avoided without requiring the presence o f 

specific hardware or software capabilities other than the ability to temporarily stop or
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synchronize individual processors. The parallel form o f this algorithm is optimal in the 

sense that its total cost is 0(N) as is the sequential version o f  the BSA.

1.8.1 Resource Requirements

For the CREW parallel machine implementation being presented here, the 

resource requirements deal with processor capabilities and memory architecture. 

Obviously, the availability o f at least two processors is required. With regards to the 

memory architecture, it is required that both local (to each processor) and shared memory 

resources be available. Details o f  these resource requirements are given below.

1.8.2 Processor Requirements 

For the purpose of this discussion, each processor must:

1) be synchronizable.

2) be independent of all other processors.

3) have a unique id number and be able to identify itself using this id number.

4) have access to a common block o f  memory (shared memory).

5) have access to a private block o f  memory (local memory).

As presented, this version o f the algorithm assumes that the five requirements 

mentioned above are available as stated. They greatly simplify various aspects o f the 

pBSA, especially memory access conflict resolution during steps 3 and 5 of the algorithm 

(sections 1.8.9 and 1.8.11, respectively). However, the pBSA can be easily modified to
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deal with machines and situations that do not meet some or all o f these requirements. 

Such modifications will be discussed in Section 1.9.

The first three requirements listed above apply to processor capabilities needed by 

the parallel version of the BSA. At various steps in this algorithm, each processor will be 

required to copy data to or from the shared memory resource. To accomplish this it will 

be necessary to start or stop all o f the processors at essentially the same time at various 

points during execution. This synchronizing operation ensures that no processor will race 

ahead o f any other and potentially invalidate the results of the algorithm.

The last two requirements listed above are discussed below in detail with regards 

to overall algorithm behavior and requirements. All processors must have access to a 

section o f memory that either is, or can be, dedicated exclusively to a single processor. 

This is needed so that the selection problem can be divided among the available 

processors without incurring unsolvable or time-wasting memory conflicts. Similarly, 

the processors must also have access to a common block of memory. This is needed so 

that the processors can share the results o f their work without requiring a complex 

message passing scheme to accomplish this task.

As with the processors, certain assumptions have been made about the availability 

and amounts o f  certain forms of memory. In particular, the parallel version o f  the BSA, 

as presented here, requires shared and local memory resources. Each memory resource 

has a specific place in the operation o f the algorithm and a specific required minimum 

amount for proper algorithm operation.
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1.8.3 Shared Memory Requirements

The shared, or common, memory resource constitutes the main repository for the 

data set and the intermediate results information created during the solution process. It is 

assumed that enough sharable memory is available to hold the entire list S  while 

processing occurs and a number o f  accumulators equal to the number o f bins used to 

solve the problem. Therefore, the maximum amount o f shared memory needed is 

(js| = bins), where bins is the number o f bins required by the algorithm to solve the given

problem, one accumulator per bin.

A reasonable estimate o f  the minimum amount o f shared memory needed is 

enough memory for one accumulator for each bin required by the algorithm to solve the 

given problem. The actual minimum amount of shared memory needed will depend 

entirely upon any modifications made to the algorithm's implementation by the 

implementer. Some o f these potential modifications will be mentioned in Section 1.9.

1.8.4 Local Memory Requirements

The local, or private, memory resource will be used to store the disjoint subset of 

S  that is assigned to each processor and the local and global solution data generated by 

the pBSA as it executes. This is accomplished by using enough local memory to store a 

complete set o f bins and a number o f accumulators equal to twice the number o f bins 

used by the pBSA to solve the given problem. Rather than store the members o f the 

disjoint subset of S  in the local memory resource and then place them in the appropriate 

bin, local memory usage is reduced by storing the elements at the time they are placed in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

[
24

a bin so that only one copy o f  the subset is kept in local memory. Thus, the maximum 

amount of local memory required is [js|/p"]-F (2 x bins).

As with the shared memory resource mentioned earlier, a reasonable estimate o f 

the minimum amount o f local memory needed is enough local memory for two sets 

accumulators (2 x bins) . The actual minimum amount o f  shared memory needed will 

depend entirely upon any modifications made to the algorithm's implementation by the 

implementer. Some o f these potential modifications will be mentioned in Section 1.9.

1.8.5 Algorithm Description

The parallel version o f  the Bin Selection Algorithm (pBSA) is an eight step 

solution to the general selection problem. This version differs from the sequential 

version previously discussed by adding steps to solve algorithmic difficulties unique to 

parallel computing, especially processor synchronization requirements and data 

communication. These steps can be summarized as follows:

Step 0 - Initial Assumptions

Step 1 - Initialization

Step 2 - Element Distribution

Step 3 - Determine Total Bin Counts

Step 4 - Locate the K* Element Bin

Step 5 - Copy Selected Bin Contents to S

Step 6 - Process/Terminate Logic

Step 7 - Result(s) Processing
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Each step is described in detail below. Throughout this discussion a running 

example will be used to illustrate the operations performed during each step o f the 

algorithm.

1.8.6 Step 0 - General Assumptions and Knowledge

As for the sequential version o f the BSA, for the purpose o f easing the complexity 

o f  this discussion, it is assumed that certain conditions exist. The pBSA starts with the 

same assumptions that were presented during the discussion o f the sequential version o f 

the BSA and for the same reasons presented therein. For the discussion of the pBSA, the 

following assumptions are added to those described earlier:

•  All o f the processor and memory requirements described in Section 1.8.1 have 

been met.

• The number o f processors used must be less than or equal to the total number 

o f bins.

The assumption dealing with the number o f  processors and bins used to solve the 

given problem is necessary. Meeting it allows for the use o f  a very simple element write

back scheme later in this algorithm. Without it, it may not be possible to guarantee that 

all processors can access shared memory without conflict. This assumption is discussed 

in greater detail in Section 1.8.9.

The parallel systems implementation assumptions are required in general. In 

order for the algorithm to function properly on a parallel architecture machine, the 

capability to synchronize or to start and stop individual processors is essential in 

maintaining orderly processing. Otherwise it is possible that a processor with fewer list
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elements to process or operates faster than its siblings will proceed to the next step o f  the 

algorithm before the current processing step is completed by all processors.

Should it not be possible to meet the synchronization requirement, it will be 

necessary to guarantee that each processor is operating on the same number o f elements 

and that each processor takes the same amount of time to process the same number o f  

elements. This situation will be discussed further in Section 1.9.

1.8.7 Step 1 - Initialization

During this stage o f  the pBSA, the overall structure of the solution to the given 

problem is generated. O f critical importance to the efficient operation of the algorithm is 

the determination o f the number o f processors to use and the total number o f bins needed. 

From these two items the rest o f the required initial data can be generated, namely, the 

bin content ranges and the element placement value. These items are discussed in greater 

detail below and illustrated with the example in Figure 1.3.

1.8.7.1 Determining Processor and Bin Requirements

The number o f processors that should be used is related solely to the number o f 

elements in the list, S. Using a number o f processors equal to the base 2 logarithm o f the 

size of S  has yielded good results. The pBSA does not have any form of fixed 

requirement as to the number o f processors it requires for valid processing. It will work 

equally well with one processor or with as many processors as are available. However, 

the number o f processors used cannot be larger than the size o f 5.
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Let N  = |"log2 \S\\ = flog225] = 5 processors needed, pids = 0 to 4. 

Let X  = |S|/AT = 5 elements from S  per processor.

Let Smax =100 and S mia =1.

Let b = flog2 ■S'max] = flog2 100] = 7 bins required.

Let 6r = fSmI/ i l  = 15.

Thus, the bin ranges are: bin 0 0 - 1 4
bin 1 1 5 -2 9
bin 2 3 0 - 4 4
bin 3 4 5 - 5 9
bin 4 6 0 - 7 4
bin 5 7 5 - 8 9
bin 6 90 - 105

Figure 1.3 Initial determination o f the number o f  processors and bins and the bin 
ranges for the example illustrating the use of the parallel version of the Bin Selection 
Algorithm.

The number o f bins required by the parallel version o f  the BSA is the same as for 

the sequential version. The only difference is in the type o f memory being used. In this 

instance, the memory being referenced is the local memory of each processor. See 

section 1.5.4 for further details.

1.8.7.2 Element Placement Method and Bin Range Determination

This is accomplished for the parallel version o f the BSA using the same methods 

as the sequential version. See section 1.5.4 for further details.
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1.8.7.3 Indirect Initialization

Likewise, this is accomplished for the parallel version o f  the BSA using the same 

methods as the sequential version. See section 1.5.4 for further details.

1.8.8 Step 2 - Element Distribution

Using the information generated in Step 1, the elements in S  are divided among 

the processors, with each processor retrieving the elements assigned to i t  Figure 1.3 

shows the number o f elements, X , each processor is to retrieve. Table 1.4 shows the 

location in S  where each processor is to start copying its elements. Note that no 

processor will ever attempt to access the same memory location during this process.

As each element is copied from shared memory it is placed into the appropriate 

bin in local memory and the corresponding accumulator incremented. Since it is possible 

that not all processors will have the same number o f elements o f S  to operate upon, no 

processor can be allowed to proceed until every processor has finished placing the 

elements o f 5  assigned to them in their bins. Therefore, a pause for processor 

synchronization is needed before the next step in the pBSA can be executed.

Table 1.4 Positions in 5  where each processor is to start copying the elements o f S  to 
local memory.

Processor # Q value

0 pid * X  = 0 * 5  = 0
1 5
2 10
3 15
4 20
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Table 1.5 Bin contents, by processor, after the first pass through S  has been 
completed.

Processor
0 1

Con

2

tents o f  Bi 

3

n #

4 5 6

0 3 15, 17 49 79

1 26 31 51 62 95

2 7 37, 33 75 99

3 1,11 43 57 82

4 14 22 55 87 91

As each element is copied from shared memory it is placed into the appropriate 

bin in local memory and the corresponding accumulator incremented. Since it is possible 

that not all processors will have the same number o f elements o f S  to operate upon, no 

processor can be allowed to proceed until every processor has finished placing the 

elements o f S  assigned to them in their bins. Therefore, a pause for processor 

synchronization is needed before the next step in the pBSA can be executed.

Table 1.5 shows the resulting bin placement o f the elements o f S  by each 

processor. Table 1.6 shows the status o f the processor and shared memory accumulators 

before the processors write their bin count (accumulator) values to their shared memory 

counterpart.
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Table 1.6 Local memory bin element counts and shared memory accumulator values 
after the first pass element distribution has been completed.

Bin 0 1

p

2

rocessor # 

3 4 5 6

be f be f be f be f be f be f be f

0 1 0 2 0 0 0 1 0 0 0 1 0 0 0

1 0 0 1 0 1 0 1 0 1 0 0 0 1 0

2 1 0 0 0 2 0 0 0 0 0 1 0 1 0

3 2 0 0 0 1 0 1 0 0 0 1 0 0 0

4 1 0 1 0 0 0 1 0 0 0 1 0 1 0

where: be - the number o f  elements in the bin (local memory).
f  - accumulator value before be is added (saved to local memory).

1.8.9 Step 3 - Determine Total Bin Counts

At this point all o f the elements in S have been placed into the appropriate bin in 

the local memory of a processor and the total number o f  elements placed in each bin 

determined. Also, at the end o f the previous step each processor was temporarily halted 

so that every processor can begin the execution o f this step at the same time. This 

synchroni2ation pause is required so that the processors can add their bin accumulator 

values to their shared memory counterparts without memory conflicts and to guarantee 

that every processor does, in fact, get the opportunity to do so for every bin accumulator.

The goal of this step in the pBSA is to reassemble the data generated by each 

processor from its disjoint subset o f  S  so that the bin location o f the K1*1 element can be
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determined. In addition, the data required for the correct execution o f Step 5 is generated 

during this process and must be preserved for later use.

Table 1.7 The order in which the processors write their bin counter values to the 
accumulators in shared memory

Time
0 1 2 3

Acc

4

umulat

5

o r#

6 0 1 2 3

0 pO Pi P2 P3 P4

1 pO p l p2 p3 p4

2 pO Pl p2 P3 p4

3 pO Pl p2 p3 p4

4 pO Pl p2 p3 p4

5 pO Pl p2 p3 p4

6 pO Pl p2 p3 p4

Memory conflicts are avoided by using the processor id's to determine where in 

the accumulator list each processor should begin. Thus each processor is assigned to a 

unique starting position and continues up the accumulator list from that point until it has 

added all o f its1 bin counts to the appropriate accumulator. The write order for each 

processor is shown for the running example in Table 1.7.

It should be noted again that this step assumes that the number o f processors used 

is less than or equal to the number of bins required by the BSA to solve the given 

problem. So long as this assumption holds then a simple write-back scheme, such as the
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scheme illustrated in Table 1.7, will meet the needs o f this step in the algorithm. The 

difficulty in generating a new write-back scheme to meet the requirements o f this step is 

such that ensuring that the initial assumption holds is the only efficient and optimal 

approach to this problem.

The fifth step o f the pBSA copies the contents o f  the bin known to contain the 

desired K111 element from each processors' local memory resource to the shared memory 

resource. It is necessary that each processor be able to write its data without overwriting 

the data placed in shared memory by the other processors. Furthermore, it is essential 

that all o f the data written by the various processors to shared memory be written 

contiguously. Any gap that is left in shared memory during the write-back process will 

allow one or more of the previous elements of S  to erroneously appear in the new list S. 

Table 1.8 shows the results o f this step as each processor stores the current accumulator 

value before adding its local bin count to each accumulator in shared memory 

respectively.

Once every processor has finished adding their bin counts to the accumulators in 

shared memory, a second pass is made through the accumulator list in the same order. 

The final value o f  each accumulator is copied into the local memory o f each processor 

and stored in the second set o f  accumulators contained therein. This data is needed by 

each processor in Step 4 so that the location of the K* element can be determined. For 

the illustrating example the results o f  this last pass are shown in Table 1.9.
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Bin 0 1

F

2

’rocessor # 

3 4 5 6

be f be f be f be f be f be f be f

0 1 0 2 1 0 3 1 2 0 1 1 3 0 3

1 0 5 1 0 1 2 1 1 1 0 0 3 1 2

2 1 4 0 4 2 0 0 1 0 0 1 2 1 1

3 2 2 0 4 1 3 1 0 0 0 1 1 0 1

4 1 1 1 3 0 3 1 3 0 0 1 0 1 0

where: be - the number o f elements in the bin (local memory).
f  - accumulator value before be is added (saved to local memory).

1.8.10 Step 4 - Locate the K* Element Bin

Each processor, working with the final accumulator values that were copied to 

local memory during the previous step, now determines which bin contains the desired 

K* element. This is accomplished in exactly the same manner as described earlier in 

Section 1.5.6 by each processor working on the given problem. Since all o f the 

processors copied the same accumulator values from shared memory, each processor will 

reach the same result. What has not been determined, however, is which processor 

actually has the K& element and its actual value.
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Table 1.9 Final accumulator values for the first pass through 51

Bin 0 1 2 3 4 5 6

Total 5 4 4 4 1 4 3

Table 1.10 Range o f eliminated elements on first pass by AT value.

K
Value Location

Elements

Remaining Eliminated

i < a: < 5 BinO 5 20 (80%)

6 <AT<9 Bin 1 4 21 (84%)

10 < ^ < 1 3 Bin 2 4 21 (84%)

14 < AT <17 Bin 3 4 21 (84%)

00II Bin 4 1 24 (96%)

\9 < K < 2 2 Bin 5 4 21 (84%)

23 < AT < 25 Bin 6 3 22 (88%)

1.8.11 Step 5 - Copy Selected Bin Contents to 5  

With the completion o f  Step 4 o f the pBSA, the bin containing the K* element 

has been identified. In addition, those members o f 5  that are o f no further use in the 

search for the K* element have been identified and can be discarded. In this step, the 

members o f the targeted bin are preserved and the remaining members of 5  are discarded
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by simply having each processor write the contents o f the target bin back to shared 

memory overwriting the previous contents o f  S  stored there.

Only those processors that have non-empty target bins perform the write back 

operation. Processors that have empty target bins make no attempt to write to the shared 

memory area and temporarily halt until all of the other processors have completed their 

write back operations. Since it cannot be predicted in advance how long this step will 

take, another processor synchronization step is required at this time.

Each processor copies the contents o f the target bin back to the space occupied by 

S  in shared memory independently o f any other processor. Memory write conflicts are 

avoided because each processor starts writing the contents o f its target bin at a unique 

position in the shared memory area that originally contained S. These unique starting 

positions were determined during Step 3 (see Section 1.8.9) and stored in the second set 

o f accumulators kept in local memory for this purpose.

Two additional operations must be performed before moving to the next step of 

the pBSA. After the copy operation is complete, the size o f S  must be reset to equal the 

accumulator value o f the targeted bin (i.e. the number o f  elements o f S' that the targeted 

bin contained). Also, since elements o f  S  both larger and smaller than K  may have been 

discarded, the value o f K  may itself have to be adjusted.

The adjustment to K  is relatively simple. If  the search is for the largest 

element in S, then the sum o f the number o f elements o f S  in the bins above, but not 

including, the target bin must be subtracted from K. For the K* smallest element in S, the 

sum of the number o f elements o f  S  in the bins below, but not including, the target bin 

must be subtracted from K.
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Referring the illustrating example, if  K  = 5 smallest is the desired element, then 

from Table 1.9 it can be seen that this element must be located in bin 0. This is true 

because bin 0 holds the smallest elements o f  S  and it currently contains five (5) elements. 

Thus, the contents o f each processor's bin 0 must be copied back to shared memory.

Using the appropriate value o ff,  shown in Table 1.8, as the starting index into the 

shared memory space occupied by S, each processor copies the elements in the selected 

bin starting at that location. The size o f S  is set to the number o f elements in bin 0. Since 

there are no bins below bin 0, no adjustment to the value o f K  is required. The final 

result o f  this step is illustrated in Figure 1.4.

Processor # Starting at Position Copies to Shared 
Memory

0 0 3
1 5
2 4 7
3 2 1,11
4 1 14

S  = (3, 14,1,11,7) and |S| = 5

Figure 1.4 Copy the selected bin contents (bin 0) to shared memory.

1.8.12 Step 6 - Process /  Terminate Logic 

With the completion o f Step 5, all o f the processors can begin executing the 

process/terminate logic of the pBSA. At this point only one o f two situations can
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possibly exist. First, we can have |5| = 1 with the desired K1*1 element the only remaining

member o f  S. I f  so, then just Step 7, result(s) processing, remains to be performed.

Otherwise, more than one element remains in S  including the K* element. Should 

the number o f elements remaining in S  be small, less than 10 or so, the remaining 

elements can be sorted and the desired K* element determined trivially. The point at 

which the remaining elements should be sorted is left for the implementer to decide. The 

pBSA will yield correct results without regard to the number o f  elements in S  as will a 

simple sort and pick operation.

If the decision is made to run the remaining elements o f S’ through the pBSA once 

more then several adjustments must be made before Steps 2 through 6 can be repeated. 

Essentially, the initialization and setup information determined in Step 1 needs to be 

recalculated. These calculations will reflect the altered problem that now exists. 

Typically, the number o f  bins and processors needed will be greatly reduced since a 

significant percentage o f the original elements of S  will have been eliminated. The range 

o f values o f the remaining elements o f  S  is much smaller than the original range.

1.8.13 Step 7 - Result(s) Processing 

The processing done in this step is trivial if  only one K* element is to be found by 

the BSA. Only the value o f  the K* element and any statistical information gathered by 

the implementer needs to be output. However, with minor modification, this algorithm is 

capable o f returning multiple K* largest or smallest element values and providing 

additional information about the members of the list, S. Further discussion o f the
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modifications to the BSA required to implement this capability, as well as other 

algorithm modifications, are described in Section 1.9.

1.9 Modifications, Other Uses, and Future Work 

The adaptability o f the BSA can be demonstrated by noting the ease with which it 

can be used by both sequential and parallel computing machines. This occurs because 

this selection method requires at least one processor and a minimum of two bins to 

function (trivial case). The use o f  additional processors, if  available, decreases the time 

needed to determine the solution. The use o f  additional bins, should sufficient memory 

be available, allows for more elements to be discarded after each iteration thereby 

increasing the efficiency o f the algorithm. Neither modification is required or needed, 

however, for the algorithm to function properly, effectively, or efficiently.

1.9.1 Non-Uniform Data and Bin Subrange Distributions

As originally designed and presented here, the Bin Selection Algorithm does not 

handle non-uniform data distributions well. As mentioned earlier, the worst case 

behavior for this algorithm is 0 (N 2), occurring when only one element is eliminated 

during each pass through the BSA. When a non-uniform element distribution is detected, 

either before or during processing, the manner in which the bin subranges are assigned 

and the element placement method must be altered to reflect the expected distribution 

pattern as closely as is possible under the circumstances encountered.

One of the advantages o f  this algorithm over the classical solution is the 

simplicity and ease with which the data elements are placed in their respective bins. The
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placement method used here, integer division, allows for a constant 0(1) element 

placement cost. It is, obviously, veiy desirable to maintain this situation i f  at all possible. 

The following scheme suggests that it may indeed be possible to do so.

This alternative element placement scheme involves the use o f a lookup table and, 

possibly, a hashing function. The lookup table would actually assign the element a bin 

location and would be accessed (indexed) in one o f three ways. The first indexing 

method would be the simplest, direct indexing. Here, the table would have as many 

entries as the data range has values. For example, i f  the valid data range is from 0 to 100 

then the table would have 100 entries. It is clearly obvious that in the case o f  a large 

range o f  possible values such a table would become unwieldy and, potentially, too large 

to store in memory (required i f  we are to maintain the 0(1) cost factor).

The second indexing method would involve the use o f a hashing function to index 

the lookup table and determine the bin into which the element should be stored. Such a 

function would also maintain the desirable 0(1) cost factor for element placement. 

However, it is not possible to guarantee that a hashing function can be found for every 

data type and distribution situation that could be encountered when using the BSA.

The third indexing method involves the use o f subranges and direct element value 

comparisons to assign elements to a particular bin. In this case, the element values are 

compared to a cutoff value. I f  they are less than or equal to the cutoff value then they are 

assigned to the corresponding storage bin. Otherwise, the element value must be 

compared to the next subrange cutoff value in the table. This process continues until the 

element is placed into a bin.
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It is obvious that, as stated, this final indexing method is not 0(1) in cost but 

dependent upon the actual number o f  comparisons needed to place each element into a 

bin. Other methods o f organizing the table for such a lookup exist but they all depend 

upon some level o f knowledge o f the actual element distribution pattern, knowledge 

which may not be available or easily obtained. The best overall solution to this problem, 

and one which reduces the overall cost o f  element placement in this case as much as 

possible, is to use a binary search to access the table. This would serve to keep the 

number o f comparisons needed to place any element in the data set as close to a single 

constant factor as possible and yet retain the overall simplicity that the BSA, as a whole, 

exhibits.

1.9.2 Memory and Data Set Size Problems 

It is entirely possible that the size o f the data set being manipulated is too large to 

be kept entirely in memory or is large enough to disallow the possibility of keeping two 

copies o f the set in memory as the original design o f the Bin Selection Algorithm 

requires. In both cases, the algorithm can be easily adjusted to deal with both 

circumstances through the use o f  one or more files stored on a hard disk. It is assumed 

that enough memory exists to keep all o f  the necessary accumulators in memory and any 

bookkeeping information that the implementer may need when using disk files to handle 

the data set and bin element storage requirements.

The first situation mentioned above is a worst case situation when dealing with 

large data sets. In this case, the algorithm will have to be modified so that all reading and 

storage o f  elements will take place using disk files. In this event, some sort o f lookup
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table will be needed so that the correct disk file will be accessed during processing. 

Refer to the earlier discussion on non-uniform element distributions in Section 1.9.1 for 

further information on the creation and use o f such tables. While the use o f disk files for 

data set and bin element storage will greatly slow the overall speed o f execution o f this 

algorithm, a properly constructed method for handling the files and the placement o f 

elements therein should not appreciably affect the overall cost o f the algorithm.

The second situation mentioned above, where the size o f the data set is such that 

two copies o f the set will not fit in memory is the easier to the two situations to handle. 

Here, we do have enough memory to store one copy of the data set and the required 

accumulators. Therefore, the data set itself is kept on disk and is read from there while 

memory holds a copy o f each element in the set based upon bin location. When the bin 

holding the element is determined, the bin contents can be copied to a new data file 

on disk, or, if  the implementer chooses, can be kept in memory if  the number of elements 

has been sufficiently reduced so that it is now possible to maintain two copies of the 

reduced data set in memory.

1.9.3 Parallel System Implementation Problems 

The number o f different parallel system designs is such that no single parallel 

algorithm description is sufficient to deal with all o f the differences between the various 

designs. The CREW PRAM design presented here is a general design intended to convey 

the overall functionality and simplicity o f the Bin Selection Algorithm and the ease with 

which it can be modified for use on different computing machinery. Whether or not the 

BSA can be implemented on any particular machine as it is described in this work is
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directly dependent upon the requirements o f  the algorithm as stated in its description 

presented earlier.

Regardless o f  the type o f parallel machine being used, one factor must be 

maintained if  the algorithm is to function as described. It must be guaranteed that no 

single processor can race ahead o f any other processor during the execution o f certain 

critical steps o f  the algorithm, such as when data is being written to the accumulators 

during step 3, Section 1.8.9. How this guarantee can be kept is up to the implementer 

since only this person can judge what works best for their particular machine.

This is accomplished in the BSA through the ability to stop any or all processors 

temporarily, to restart processors, and through the use of the read/write synchronization 

method illustrated in table 1.7. If the scheme presented will not work for the destination 

machine then the current methods for synchronizing the reading and writing o f  elements 

and data in memory must be modified such that all processors can perform all required 

operations without memory collisions, lockouts, or any other form o f  interference. 

Otherwise, it cannot be guaranteed that the algorithm will yield correct results or even be 

able to operate a t all.

1.9.4 Other Uses

A major improvement afforded by this algorithm over the classic algorithm is that 

the Bin Selection Algorithm can be used to find more than one K* element from a list S 

without having to search the entire list each time. By saving the bin contents and the 

accumulator values to permanent storage after the first element distribution pass through 

S, other elements can be determined without repeating the expensive first pass. If
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sufficient memory exists, the bin contents and accumulator values can be copied to 

another section o f memory for later use.

In either event, the results o f  the first element distribution pass through S can be 

recalled and reused without incurring first pass costs. Step 3 o f  the BSA must be 

modified to perform the desired save operation since this is when the total bin counts are 

determined.

This algorithm can also be modified to yield more information about the elements 

in the list than just the single K01 element desired. The actual minimum and maximum 

values for each subrange as well as the entire list can be determined during execution. 

Element distribution information can be acquired as well as a count o f the elements 

within specified subranges or those meeting other specified conditions.

1.9.5 Future Work

Further work is needed with regard to the method used to determine the optimal 

number of bins to be used. The integer division method works well and is simple to 

implement. However, no account is taken o f element value distributions and the number 

o f  processors and memory available when the number of bins required is computed. It is 

believed that a  method o f calculating an optimal number o f buckets required is possible 

and that such a calculation need not be complex or time-consuming.

1.10 Conclusion

As has been shown above, the Bin Selection Algorithm is a fairly well-behaved 

linear solution to the Selection problem. It is also a highly and easily modifiable
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algorithm. Its very simplicity makes it a very easy to understand and implement on a 

wide variety o f  computer systems in any programming language. Designed for normal 

element distributions, with minor alterations this algorithm can be made to handle 

skewed element distributions efficiently. Even the worst case scenario for this algorithm, 

a sparse list with a large range, can be handled by relatively simple modifications to the 

basic algorithm.
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CHAPTER 2

STEINER TREES

The general Steiner Tree problem in graphs is the problem o f  finding a  tree 

connecting a given set o f nodes, S, in a connected undirected distance graph 

G = (V ,E ,d ), where V  is the set o f vertices, S  c  V is the set o f  Steiner vertices, and E  is 

the set o f edges in the graph. The minimum Steiner tree for G and S  is a tree which spans 

S  with a minimum total distance on its edges. For a graph G = (V ,E ,d ), where d =  1 for 

all edges, the minimum Steiner tree for G and S' is a  tree which spans S  that includes the 

minimum number o f vertices not in S.

This problem has long played a prominent role in many physical design tasks. It 

has a wide variety of practical applications such as communication networks, layout 

design of printed circuit boards and integrated circuits. It also has application in the 

mechanical and electrical systems in buildings, distribution and transportation networks, 

the wire routing in physical VLSI design and in phylogeny (evolutionary trees.)

2.1 Previous Work

It has been shown that finding a minimum Steiner tree for any given G and S  is 

NP-Complete [8]. In fact even when distance functions are restricted to a particular class, 

the problem is still NP-Complete [8]. This means that it is unlikely that an efficient 

algorithm can be found to compute the minimum Steiner tree for any given G and S.

45
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Due to its importance, there has been a great deal o f work on approximation 

algorithms for the Steiner tree problem [4, 9, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23]. 

Takahashi and Matsuyama [19] present an 0(|S|(V2|) approximation algorithm for finding 

a Steiner tree in a given G and S. Moreover, it has been shown that 

D(TS )JD{ropt) < 2(l -  l/|S|) where D(TS) denotes the total distance on the edges o f the

Steiner tree generated by their algorithm and D(Topt) denotes the total distance on the 

edges o f the optimal Steiner tree [19].

Kou and Makki [9] later developed an 0 ( j £ |  + |K - 1S jlo g |F -5 | +  «log/?(«,|5|))

approximation algorithm where « = min(j£,|, |5 |( j5 |-l)/2 ) and

= min{r, log' < «/|S|} . The ratio o f the total distance on all the edges of a Steiner 

tree generated by the algorithm to that o f the optimal tree is not greater than 2(1 -  1/Z) 

where L represents the number of leaves in the optimal tree. Their bound has been 

further improved by Makki [11] to o(jZs[ + \V\log[F|).

Waxman and Imase [20] have shown that Rayward-Smith’s approximation 

algorithm [16] is also bounded by 2(1 — 1/Z) [20]. The bound 2(1 — 1/Z,) has been known 

to researchers in the field for a decade as the best worst case ratio. Recently Zelikovsky 

[23] has shown that this worst-case bound can be improved and his result has been 

further refined by Berman and Ramaiyer [4],

2.2 A New Steiner Tree Algorithm 

This work considers a special case of the Steiner tree problem in graphs. For this 

problem it is assumed that the underlying graph G  does not have any direct edge between 

the vertices in S  c  V  and that all edges in E  are o f unit length. The problem is to find a
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tree in G  which spans the vertices in S  and uses a minimum number o f vertices in V -  S . 

Makki and Pissinou [14] were the first to formulate this problem and present an efficient 

approximation algorithm for it. Here, we present and analyze a new approximation 

algorithm for this problem.

2.3 General Description 

This algorithm differs from the other solutions proposed for the Steiner Tree 

problem in that it does not follow normal computer science algorithm design practices. 

Rather than use prior art or an elegant application o f various common algorithms and 

techniques, this algorithm uses a  basic engineering brute force approach. This is a result 

o f  the basic philosophy used during the design o f this algorithm that can be best 

described as the 'what do I  know now and how do I  take advantage o f  this fact' 

philosophy. This question and the eventual answer guided and controlled the entire 

design process. Additionally, as each step in the solution process was determined and 

verified, every effort was made to keep the impact and implementation of the new 

solution step as simple as possible to avoid unnecessary complications to previous steps 

in the algorithm.

What finally emerged from this process is the relatively simple bookkeeping 

algorithm presented below. It makes use o f five data structures to organize all of the 

original graph data and to track the solution process as the Steiner Tree is generated. As 

the status o f the various nodes and edges o f the graph G  change, these data structures are 

modified accordingly. This process is the heart of the algorithm since the change in value 

o f the various nodes and edges in G  as the solution tree construction progresses 

determines the next step in the tree construction process.
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In general, this algorithm operates by creating a series o f  subtrees that contain all 

of the Steiner vertices, S, and then connecting these subtrees until a single tree contains 

all o f the Steiner vertices. First, all o f  the vertices in the Af — S  subset that have edges 

leading to more than one Steiner vertex are selected. For each such vertex, a subtree 

consisting o f  this vertex, the Steiner vertices it is connected to by a  single edge, and those 

edges is generated. If  all o f the Steiner vertices have been placed in subtrees during this 

step then a  check is made to see if  a solution has been obtained. If  a single subtree 

contains all o f the Steiner vertices then a solution has been found and the algorithm ends.

Should the first step not result in a solution then one o f two possibilities exists. 

Either all o f  the Steiner vertices have not been placed into subtrees or there exists two or 

more disjoint subtrees holding all o f the Steiner vertices. Should the first situation arise 

and not all o f  the Steiner vertices be members o f the existing subtrees then each 

remaining Steiner vertex is placed in a  subtree of its own along with one non-Steiner 

vertex and their connecting edge. All o f  the vertices selected during these two steps are 

considered selected  and are so marked in the various data structures.

Now that all o f the Steiner vertices are known to be in two or more disjoint 

subtrees it is necessary to connect these subtrees thereby generating the desired solution 

tree. It is possible that the addition o f one or more edges will complete the connection 

process so the data structures are examined to locate such edges. Any such edge located 

is added to the subtree list as a subtree consisting of the two nodes and the desired new 

edge. All o f  the subtrees thus joined together by the addition o f the new edge are marked 

with the status value connected. All vertices and edges so marked are considered to part
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o f the final solution tree. Should all o f  the Steiner vertices have the status connected at 

the end o f this step then the solution tree has been generated and the algorithm halts.

If  the addition o f single edges, if  possible, does not generate the solution tree then 

the disjoint subtrees are more than a single edge distant from each other. To join these 

subtrees it will be necessary to generate new subtrees from the list o f  available non- 

Steiner vertices until all o f the currently disjoint subtrees can be connected together. 

Each new subtree will be composed o f  one new non-Steiner vertex and two edges, one of 

which leads to a Steiner or non-Steiner vertex that has been marked as selected or 

connected. This process continues until all o f the Steiner vertices have been marked 

connected, thus indicating that the solution tree has been generated.

The key to this entire process is the record keeping required by the changing 

status and value o f the various vertices in the original graph G. A vertex becomes more 

valuable and important to the eventual solution as the number o f its edges leading to 

Steiner, selected, or connected vertices increases. Such vertices will be used before any 

other vertex is chosen for inclusion in the solution tree. When no such important vertices 

can be identified then a simple selection criterion is used to choose a vertex to add to the 

subtree list (and the eventual solution tree).

2.4 Basic Definitions 

Given a connected undirected graph G = (V ,E ,l) where

■ Visa, set of vertices

■ E  is a set of pairs of vertices called edges that connect the vertices

■ all edges are o f  unit length
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We define

1. 5 c F  be the set o f Steiner vertices (nodes)

2. NS  = V  — S  be the set o f  non-Steiner vertices

3. R  to be the solution tree output by this algorithm

4. Pi to be the i* subtree, not yet a part o f R

In addition to being partitioned into one of the two above subsets o f  G, each 

vertex has two distinct attributes associated with it. These attributes are the select status 

and the connect status o f the vertex. The select status is used to indicate if  the vertex has 

been chosen as part o f a subtree Pi in the subtree list. A 'selected vertex is informally 

considered to be a part o f the solution tree R.

The connect status is used to indicate if  the vertex has been formally included in 

the solution tree R. Connect status is also used to indicate which vertices and, therefore, 

which subtrees Pi have not yet been joined to the tree R. The algorithm stops when all o f 

the Steiner vertices have been 'connected. A vertex cannot be 'connected to the tree R if  

it has not been 'selected by the algorithm. Thus the valid status values for any vertex are 

unselected/imconnected, selected/unconnected, and selected/connected.

2.5 An Example Problem

In order to demonstrate the operation o f  this algorithm, a sample graph G is 

provided for illustrative purposes. The example graph is shown in Figure 2.1.
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Figure 2.1 Example graph G with Steiner Nodes (donuts) used to illustrate the 
operation o f  this algorithm.

2.6 The Required Data Structures 

Five data structures are used to organize and track the status o f the Steiner and 

non-Steiner vertices in G as the solution tree R  is generated.

2.6.1 The Steiner Node List (SNL)

This list contains vertex connection data from G pertaining to the vertices in 5. 

This information is represented as a one-dimensional array the size o f [S|. Each location

in the array represents a single vertex in S ., Si, and has space reserved for a pointer to an 

ordered linked-list o f vertices in S  and NS, respectively. This list consists o f those 

vertices that have an edge in common with Si and, in the future, is referred to as the
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'edge-list.' Each edge-list is ordered by vertex number. This array, representing the 

vertex set S, is the Steiner Node List, SNL.

Table 2.1 The Steiner Node List (SNL) after initialization.

Si Edge List

1 8 □
2 8 9 □
3 7 □
4 5 □

2.6.2 The Non-Steiner Node List (NSNL)

This list contains vertex connection data from G pertaining to the vertices in NS. 

This information is represented as a one-dimensional array the size of |-MS|. Each

location in the array represents a single vertex in NS, NS;, and has space reserved for a 

pointer to an ordered linked-list o f vertices in S  and NS, respectively. This list consists of 

those vertices that have an edge in common with NSi and, in the future, is referred to as 

the 'edge list.1 Each edge list is ordered by vertex number. This array, representing the 

vertex set N S  is the Non-Steiner Node List, NSNL.

Each location in the NSNL array also has space reserved for several vertex status 

values used by the algorithm to select or reject vertices for incorporation into the solution 

tree R. For each vertex in the NSNL four status values are kept. They are the number of 

Steiner nodes sharing an edge with the vertex, the total number o f vertices sharing an 

edge with the vertex, the number o f vertices that have 'selected status, and the number of
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vertices that have 'connected status. Space is also reserved for each vertex in the NSNL 

for a pointer to the vertex's location in the pick list.

Table 2.2 The Non-Steiner Node List (NSNL) after initialization.

#s # v #sel #con NSi Edge List

1 3 0 0 5 4 6 7 □
0 2 0 0 6 5 9 □
1 3 0 0 7 3 5 9 □
2 2 0 0 8 1 2 □
1 3 0 0 9 2 6 7 □

2.6.3 The Pick List (PL)

The pick list, PL, is an ordered linked-list containing index values into the NSNL. 

Membership in the pick list changes twice during the algorithm's operation. Initially, the 

pick list contains indices to those NSNL vertices that have edges leading to multiple 

Steiner vertices. Later, the pick list contains those vertices in the NSNL that have the most 

edges leading to vertices in the subtrees Pi in the SL. Members o f  PL  are ordered by 

vertex number.

Table 2.3 The first Pick List (PL) after initialization.

PL 8 □
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2.6.4 The Subtree List (SL)

A data structure similar to the SNL is used to store the subtrees, Pi, generated by 

the algorithm that may eventually be part o f the solution tree R. Each location in the 

array contains a pointer to a single subtree P„ This array is the subtree list, SL.

Table 2.4 The Subtree List (SL) after initialization.

Pk Vertex (edge) List

0 □
1 □

2.6.5 The Select/Connect Table (SCT)

A simple data table is used to track the solution status as the algorithm proceeds. 

For each vertex in G the following information is stored in the data table: the connection 

and selection status o f  the vertex, the number o f subtrees in the subtree list, SL, that 

contain the vertex, and a linked list o f SL array indices indicating the subtrees Pj in which 

the vertex has membership. This data table will be referred to as the Select/Connect 

Table, SCT.

Table 2.5 The Select/Connect Table (SC I) after initialization.

vertex # 1 2  3 4 5 6 7 8 9

selected

connected

# o f  subtrees 0 0 0 0 0 0 0 0 0

subtree list
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2.7 The Algorithm

This approximation algorithm uses a simple bookkeeping method for determining 

the shortest tree that connects all o f  the Steiner vertices S in a given graph G. It consists 

o f the following eight steps:

1. Graph Preprocessing

2. Initialization

3. Steiner Vertex Selection

4. Vertex Connection Evaluation

5. Subtree Traversal

6. Single Edge Connection

7. Non-Steiner Vertex Selection

8. Solution Tree Output

2.7.1 Step 0 - Graph Preprocessing 

This step consists primarily o f ordering the vertices in the graph G in a consistent 

manner so that the algorithm can operate efficiently. By the nature o f  the problem, the 

vertices in the graph G have already been separated into the two subsets S and 

NS  = V — S , representing the Steiner and non-Steiner vertices respectively. Only a 

vertex numbering scheme is required.

The method used to number the vertices o f the graph, G, is directly related to the 

efficiency o f  this algorithm as it is presented here. Besides serving as a way to order the 

vertices and provide a convenient manner o f specifying the edges o f  G, it drives the
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simple vertex selection methods that will be used at various stages during the execution 

o f this algorithm. Therefore, care must be taken when the vertices o f  G  are labeled.

This algorithm, as presented, favors the lower numbered vertices over those with 

higher numbered labels. Should the user have any special knowledge o f the given graph, 

G, this can be taken into account as the vertices are labeled. With care, a potential, or 

desirable, solution path can be marked by the user by simply labeling those vertices the 

user would like to see included in the final tree with lower vertex numbers than the rest of 

the vertices in the graph.

Regardless o f the numbering scheme used, the Steiner vertices, S, must be 

numbered before the non-Steiner vertices, NS. This is required so that the Steiner vertex 

subset can be easily identified and to separate them from the non-Steiner vertex subset. 

The vertex numbers finally assigned to these two vertex subsets must be done such that 

the two vertex subsets remain disjoint, otherwise this algorithm will not function 

properly. The order in which the Steiner vertices are numbered is not important although 

imposing some sort o f criteria (clockwise, for example) is useful in organizing the 

vertices for later reference.

Unlike the Steiner vertices S ., the order in which the non-Steiner vertices, NS, is 

numbered is important and will affect the size of the solution tree R  produced by this 

algorithm. A regular and consistent numbering scheme is recommended, such as from 

the left to the right and from the bottom to the top o f the graph G. Any special 

knowledge o f  the graph or other special preferred solution criteria is incorporated into the 

vertex numbering scheme at this time. A chaotic or random non-Steiner vertex 

numbering system should be avoided since it will cause the algorithm to output a
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decidedly non-optimal solution which, in the worst case, can contain o f  all o f  the vertices 

and most o f  the edges in G. The numbering scheme chosen for the graph that will be 

used to illustrate this algorithm can be observed in Figure 2.1.

The data required to initialize the various data structures is also collected during 

this step. The total number o f vertices in the graph G, |V|, and the number o f  Steiner 

vertices, |Sj, are required for correct algorithm behavior and data structure creation and 

initialization. These values and others will be determined during the data entry process 

when the graph data is entered into the algorithm during the initialization step.

2.7.2 Step 1 - Initialization 

Initialization o f the SNL and the NSNL data structures is accomplished during the 

data entry process. Using the vertex numbering scheme imposed during the graph 

preprocessing step, each vertex is taken in numerical order. The ordered edge list for 

each vertex is also created in numerical order. For example, if vertex 3 has three edges 

leading to vertices 1, 5, and 6 respectively, then the edges will be entered in the following 

order 3-1, 3-5, and 3-6.

The vertex status information in the NSNL is also initialized during the data entry 

process. The values regarding the number of Steiner vertices and total number o f  vertices 

sharing an edge with the NSNL vertex being initialized are tabulated. The other status 

values are initialized to zero. No vertex status information is kept for vertices in the SNL.

After the SNL and NSNL arrays have been initialized, the ordered pick list PL can 

be created. Initially, the pick list contains an entry for each non-Steiner vertex W  in the 

NSNL that has edges leading to two or more Steiner vertices in S. Each vertex W  in the 

pick list is organized according to the number o f edges from W  that lead to Steiner
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vertices and is further ordered by vertex number o f  W  if  necessary. Later in the algorithm 

the contents o f the pick list will be replaced to reflect the changed nature o f vertex 

selection as the solution tree, R, is generated. The remaining data structures, the SL and 

the SCT  are initialized to null or zero where appropriate.

The Steiner Node List, NSL, generated by this step is shown in Table 2.1. The 

Non-Steiner Node List, NSNL, is shown in Table 2.2. The Pick List, PL, for the first 

portion o f the algorithm that was generated during the initialization step is shown in 

Table 2.3. The Subtree List, SL, is shown in Table 2.4 and the Select/Connect Table, 

SCT, in Table 2.5.

2.7.3 Step 2 - Steiner Vertex Selection 

The objective o f  this portion o f the algorithm is to place all o f  the Steiner vertices 

Si into one or more subtrees Pk and record these assignments in the subtree list SL, the 

select/connect table SCT, and the non-Steiner node list NSNL. It is very important that 

the appropriate data structures be correctly updated when a vertex is assigned to a subtree 

Pic. Any eiTors made in updating the various data structures and their components will 

cause this algorithm to generate a decidedly poor solution tree R since the vertices and 

edges added to it in a later step will be selected using erroneous criteria.

The placement o f  the Steiner vertices S  is accomplished in two steps, if  necessary. 

First, using the pick list PL, the non-Steiner vertices NS, that possess multiple edges 

leading to Steiner vertices are selected first. For each such NS; selected, a  subtree Pk is 

generated using NSi as the root and the Steiner vertices as leaves. The subtree Pk is 

stored in the SL and the appropriate entries in the NSNL and the SCT  are then updated to
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reflect the new solution situation. The selection process continues until the pick list is 

empty or until all o f  the Steiner vertices have been chosen.

It is possible to choose a vertex NS; from the pick list that has edges leading to 

Steiner vertices that have already been included in a subtree Pk in the SL. If  at least one 

edge leads to a Steiner vertex Sj that is not a  member o f an existing subtree then a new 

subtree Pk is generated. This subtree will have NSj as the root and all Sj that exist and 

only one previously selected Steiner vertex as leaves. Otherwise, such vertices are 

rejected since they provide no advantage or new Steiner vertex connections to the 

solution process and are therefore redundant.

Second, using the same pick list, any Steiner vertices that have not been placed 

into a subtree in the subtree list SL are then added to the SL together with a single non- 

Steiner vertex and connecting edge. In this case, the pick list PL has been emptied of 

non-Steiner vertices with multiple edges leading to different Steiner vertices before all o f 

the Steiner vertices were been placed into a subtree. This is a less desirable situation than 

the one described previously since it indicates that at least some of the Steiner vertices in 

the graph G are far apart (more that a single edge or one non-Steiner vertex and two 

edges distance) from each other.

For each missing Steiner vertex Sj, a new subtree Pk is created by taking from the 

PL the first non-Steiner vertex NS* that has an edge leading to an unselected Steiner 

vertex Sj. Each entry into the SL will be the subtree Pk, whose root vertex is NS, with one 

leaf vertex, Sj. Again, the appropriate entries in the NSNL and the SCT are then updated 

to reflect the new solution situation.
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The following list describes the substeps, in order, that must be followed to 

correctly complete this portion o f the algorithm.

1) I f  the pick list PL is empty then proceed to (8).

2) From the PL, remove the first vertex and make it NSj.

3) Using the SCT, check the select status o f every Steiner vertex Sj with an 

edge leading to NSi.

a) I f  any Sj is not marked selected  then proceed to (4).

b) I f  all Sj are marked selected then discard NS,- and proceed to (1).

4) Place the vertices NSj and Sj into a new subtree Pk in the subtree list SL as 

follows: the root vertex NSi followed by each Sj in numerical vertex order.

a) I f  any of the vertices Sj are marked selected in the SCT  then only the 

first such vertex Sj can be included in Pk. All other Sj that are marked 

selected are to be ignored and not included in Pk-

5) In the SCT, for each vertex NSi and Sj in Pk:

a) Increment the subtree membership count.

b) Add k  to the list o f subtrees containing the vertex.

c) Mark the vertex as selected i f  it is not already so marked.

6) In the NSNL, for NSi,

a) For each Sj added to Pk:

i) Decrement the Steiner vertex count.

ii) Delete Sj from the edge-list.

iii) Decrement the total vertex count.

iv) Increment the total selected count.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

61

b) In the SNL, for each Sj added to Pk delete NSi from the edge-list o f  Sj.

c) Using the SNL, for each NSi in the edge-list o f eveiy Sj in the new Pk, 

where NSi *= NSi, increment the total selected count.

d) For each remaining vertex NSi in the edge-list o f NSi, where NSi 

\not\in Sj, increment the total selected  count.

7) Until all o f  the Steiner vertices Sj in the graph G are marked selected in the 

SC T  proceed to (1).

8) If  all o f  the Steiner vertices Sj have been marked selected in the SCT  then 

Step 2 is finished. Proceed to Step 3, Section 2.7.4.

Table 2.6 shows the resulting data tables after completion of the first Steiner 

vertex selection step. Table 2.7 shows the resulting data tables after completion o f  the 

second Steiner vertex selection step. Table 2.8 shows the resulting tables after 

completion o f  the third and final Steiner vertex selection step.

With the completion o f this step every Steiner vertex Sj is now be a member of 

some subtree, Pk, in the forest shown in the SL. This placement is reflected in the 

appropriate entries in the Non-Steiner Node List NSNL and the Select/Connect Table 

SCT. Next, the forest must be examined to determine if  the solution tree R  has been 

generated and, i f  not, then to determine how much o f  R  was generated during this step 

and what must be done to complete the solution tree.
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Table 2.6 The data structures after the first Steiner Node Selection step.

Si Edge List

1 □
2 9 □
3 7 □
4 5 □

#S # v #sel #con NSi Edge List

1 3 0 0 5 4 6 7 □
0 2 0 0 6 5 9 □
1 3 0 0 7 3 5 9 □
0 0 2 0 8 □
1 3 1 0 9 2 6 7 □

□PL

Pk Vertex (edge) List

0 8 1 2 □
1 □

vertex # 1 2  3 4 5 6 7 8 9

selected

connected

# o f subtrees 1 1 0 0 0 0 0 1 0

subtree list 0 0 - - - - - 0 -
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Table 2.7 The data structures after the second Steiner Node Selection step.

Si Edge List

1 □
2 9 □
3 7 □
4 □

#S # v #sel #con NSi Edge List

0 2 1 0 5 6 7 □
0 2 1 0 6 5 9 □
1 3 1 0 7 3 5 9 □
0 0 2 0 8 □
1 3 1 0 9 2 6 7 □

PL □

Pk Vertex (edge) List

0 8 1 2 □
1 5 4 □

vertex # 1 2  3 4 5 6 7 8 9

selected v '' s
connected

# of subtrees 1 1 0 1 1 0 0 1 0

subtree list 0 0 - 1 1 - - 0 -
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Table 2.8 The data structures after the third Steiner Node Selection step.

Si Edge List

1 □
2 9 □
3 □
4 □

#S # v #sel #con NS; Edge List

0 2 2 0 5 6 7 □
0 2 1 0 6 5 9 □
0 2 2 0 7 5 9 □
0 0 2 0 8 □
1 3 2 0 9 2 6 7 □

PL □

Pk Vertex (edge) List

0 8 1 2 □
1 5 4 □
2 7 3 □

vertex # 1 2  3 4 5 6 7 8 9

selected S S S

connected

# o f  subtrees 1 l l 1 1 0 1 1 0

subtree list 0 0 2 1 1 - 2 0 -
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2.7.4 Step 3 - Steiner Vertex Connection Evaluation 

The objective o f this step in the algorithm is to evaluate the forest generated 

previously. It must be determined i f  the subtrees as they exist in the subtree list SL 

constitute the solution tree R  or if  further work is required to generate R. Four situations 

are possible at this point in the algorithm. They are:

1. A single subtree, P0, exists in the SL that contains all o f  the vertices in S.

2. Each Steiner vertex Sj is a  member of only one subtree Pk in the SL (all of 

the subtrees are disjoint).

3. Some o f the Steiner vertices Sj are members o f more than one subtree Pk 

in the SL and that none o f  the subtrees are disjoint.

4. Some o f the Steiner vertices Sj are members o f more than one subtree Pk 

in the SL and that at least one o f the subtrees is disjoint.

The first case, where the SL contains a single subtree Po, is the ideal result. Here, 

a  single non-Steiner vertex connects all o f  the Steiner vertices in the graph G. The 

subtree Po is the solution tree R for graph G. We can proceed directly to solution tree 

output step in Section 2.7.8.

The second case, where each Steiner vertex in G exists in only one subtree Pk in 

the SL and all o f the subtrees are disjoint, is the worst case scenario for this algorithm. At 

best, it will require the addition o f  one or more single edges to connect the subtrees Pk in 

the SL. At worst, it will require the addition o f more subtrees to the SL in order to 

connect the forest generated in the previous step.

This situation can be easily detected by examining the Steiner vertex entries in the 

SCT  for membership in multiple subtrees in the SL. When the subtrees are disjoint, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

66

total subtree membership count for each Steiner vertex in the SCT  will be one (1). The 

traversal o f any subtree in the SL will yield no benefit or new information at this time. 

However, a starting point is needed for the remaining steps o f this algorithm. Therefore, 

traverse the subtree Po in the SL using the method described in Section 2.7.5 and then 

proceed to the single edge connection step, Section 2.7.6.

The third and fourth cases involve subtrees in the subtree list SL that have Steiner 

vertices in common. The third case, like the first, is an ideal result since the solution tree 

R  has been generated during the Steiner vertex selection step. However, it is not obvious 

that R  has been found since multiple non-Steiner vertices have been included in the 

subtrees found in the SL.

The fourth case lies between the third and second in desirability. Here, at least 

two o f the subtrees in the SL are not disjoint. It is not known which subtrees are disjoint 

and their number. However, once the subtrees that share a common vertex are found, and 

marked connected in the SCT, a good starting point for further processing will have been 

identified.

For the third and fourth cases, the existence of common Steiner vertices in the 

subtrees o f the forest can be determined by examining the Steiner vertex data entries in 

the SCT. Any Steiner vertex that is a  member o f more than one subtree will have a value 

greater than one (1) in the total subtree membership count variable in the SCT. In both 

cases it will be necessary to traverse the subtrees Pk in the SL to determine their actual 

connection status and whether further processing is required to generate R.
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2.7.5 Step 4 - Subtree Traversal 

This step in the algorithm travels through the forest in the subtree list SL and, in 

essence, determines the connection status o f the subtrees therein. As it proceeds through 

the SL, every vertex in each subtree Pk that is encountered is marked connected and the 

appropriate data in the NSNL and SCT  is updated. Vertices that are marked connected are 

known to be part o f the solution tree R  and serve as starting points for further processing 

if  it is determined that not all o f the Steiner vertices are present in R. Once all o f the 

Steiner vertices are so marked in the SCT  further processing can be halted since the 

solution tree R  will have been completed.

The traversal process can start with any subtree Pk in the SL and will do so 

depending on when this step is executed since this particular step in the algorithm can be 

called out of sequence when, and as, needed. Although the subtree that the traversal 

starts with is relatively unimportant, it is recommended that when this step is executed for 

the first time the starting subtree be the one with the Steiner vertex that appears in the 

most subtrees or with the lowest numbered Steiner vertex that appears in multiple 

subtrees. This will allow for the connection o f the largest possible number of vertices 

early in the solution process and generate the best possible starting point for finishing the 

creation o f the solution tree R.

To traverse the subtrees Pk in the SL, do the following:

1) Select a subtree Px in the SL from which to start the traversal if  Px has not 

been previously specified.

a) Create a temporary traversal list TL and place the subtree Px in the TL.

2) For each vertex W  in Px, if  W  is not marked connected in the SCT:
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a) M ark W  as connected in the SCT.

b) I f  W  e  SNL then for every vertex NSi in its edge-list, increment the 

total connected count variable.

c) I f  W  e  NSNL then for every vertex NSi in its edge-list, increment the 

total connected count variable.

d) I f  IF is a member o f more than one subtree then add the subtree

numbers z , where , to the temporary traversal list TL.

i) I f  z  currently exists in the TL or has been an earlier member

o f the list already traversed then do not add z  to the TL.

3) While the TL is not empty, select a new Px from the TL and repeat substep 2 

above.

4) When the TL is empty examine the connect status o f every Steiner vertex in 

the SCT. I f  all o f the Steiner vertices are marked connected then the solution 

tree R  has been generated. In this event, proceed to Step 7, Section 2.7.8, to 

complete the algorithm. Otherwise, proceed to Step 5, Section 2.7.6, for 

further processing.

By traversing this first subtree and all o f  the other subtrees subsequently 

encountered, the extent o f the connection between the subtrees in the SL can be 

determined. If  any o f  the subtrees in the SL are disjoint then at least one o f  the Steiner 

vertices in the SC T  will not be marked connected. Should all o f the Steiner vertices in the 

SL be marked connected then a solution tree R has been found. Only those vertices in the 

SCT  that have been marked selected and connected and the subtrees Pk in the SL that 

contain these vertices make up the solution tree R.
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If  Steiner vertices remain in the SCT  that are not marked as connected then at 

least one o f the subtrees in the SL is disjoint In this event a partial solution has been 

found and marked connected in the SCT. It is from this connected group o f subtrees in 

the SL  that the solution tree R will be built.

2.7.6 Step 5 - Single Edge Connection

When disjoint subtrees are found in the SL two possibilities exist for connecting 

such subtrees. First, the vertices making up the subtrees can be in close proximity to each 

other in the graph G. A single edge may be all that is needed to join such subtrees. 

Second, the vertices may be far apart in the graph G in which case one or more non- 

Steiner vertices and multiple edges will have to be added to join the disjoint subtrees.

In this step we search for those subtrees in the SL that can be joined by the 

addition of a single edge. This is accomplished by examining the edge-list o f  every non- 

Steiner vertex NSi that is marked selected in the SCT. Should a member o f this edge-list 

be found that is marked selected in the SCT  then a single edge connecting two subtrees 

has been located. This single edge is added to the subtree list SL only when both vertices 

are not marked connected in the SCT  and both vertices are not members o f the same 

subtree. The following substeps will accomplish this task.

For every vertex NSi in the SCT  that is marked selected and every vertex NSj in 

the edge-list o f  NSi:

1) I f  NSj is marked selected in the SCT  then proceed to (2). Otherwise, discard 

NSj and repeat this substep with another NSj.

2) I f  NSi and NSj are both marked connected in the SCT then discard NSj and 

start again at (1) with a new NSj. Otherwise, proceed to (3).
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3) Add NS,- and NSj to the SL as a. new subtree Pk with NSi as the root vertex 

and NSj as the only leaf.

4) In the SCT, for NSi and NSj:

a) Increment the total subtree count

b) Add k  to the subtree list.

5) In the NSNL:

a) For NSi and NSj, decrement the total vertex count.

b) Delete NSi from the edge-list o f NSj.

c) Delete NSj from the edge-list o f NSi.

6) Starting with the new subtree, Pk, use the traversal method detailed in Step 4, 

Section 2.7.5, to traverse Pk and all subsequent subtrees thereby marking 

their vertices connected in the SCT.

7) If/? has been generated then proceed to Step 7, Section 2.7.8. Otherwise, 

continue the single edge connection step until all NSi have been tested.

2.7.7 Step 6 - Non-Steiner Vertex Selection

This is the final vertex selection step of the algorithm. In this step we attempt to 

connect the disjoint subtrees in the SL by adding new subtrees to the SL that have at least 

one edge leading to an existing subtree whose members are marked connected in the 

SCT. This step is totally dependent upon the accuracy o f the status information recorded 

during the earlier steps o f the algorithm. Using this data, we will attempt to select those 

non-Steiner vertices that have the greatest value in connecting the disjoint subtrees and 

also provide the shortest path possible between those subtrees.
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Table 2.9 The data structures after the Single Edge Connection step and a traversal of 
the subtrees.

Si Edge List

1 □
2 9 □
3 □
4 □

#S # v #sel #con NSi Edge List

0 1 2 0 5 6 □
0 2 1 1 6 5 9 □
0 1 2 0 7 9 □
0 0 2 0 8 □
1 3 2 1 9 2 6 7 □

Pk Vertex (edge) List

0 8 1 2 □
1 5 4 □
2 7 3 □
3 5 7 □

vertex # 1 2  3 4 5 6 7 8 9

selected S

connected

# of subtrees 1 l l 1 2 0 2 1 0

subtree list 0 0 2 1 1,3 - 2,3 0 -
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Before beginning the final selection process, a new pick list o f  non-Steiner 

vertices from the NSNL must be generated. The pick list PL for this portion o f  the 

algorithm is created in a slightly different manner than before. The new pick list PL  is 

generated using the following rules:

1) For every NSi in the NSNL calculate (total selected - total connected) and 

store the result in a temporary variable t;.

2) For every NSi in the NSNL, add NSi to the PL if:

a) ti is not zero or negative (if ti is negative then the data recorded in the 

NSNL  for that vertex is incorrect and the algorithm should be aborted 

and the partial solution discarded).

b) NSi is not marked selected in the SCT.

c) The value o f the total connected variable for NSj is greater than zero, 

and order each entry into the PL such that:

d) Those NSi with the highest ti values are in the front o f the list.

e) For those NSi that have the same ti value, order them by their vertex 

number, lowest to highest.

3) If  the pick list PL  is empty at this point then generate an entry for the PL  by 

placing in the PL the lowest numbered NSi whose total connected variable 

value is greater than zero and:

a) NSi is not marked selected in the SCT.

b) NSi does not have an edge leading to a Steiner vertex.
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As before, vertices are chosen from the front o f  the pick list PL. For each vertex 

W  selected from the PL a new subtree, Pk, is created in the SL with W  as the root vertex. 

The new subtree Pk will consist o f at least two vertices, including W, and one edge, 

depending upon the type o f subtree that can be generated.

Each subtree Pk generated during this step in the algorithm is one o f  two valid 

types. The first valid type of subtree directly connects two or more disjoint subtrees Pj in 

the SL. Here, each leaf o f Pk is a member o f  one o f  the subtrees P;. Multiple vertices 

from a single subtree Pi are not allowed.

The second valid type o f subtree has only one edge leading to an existing subtree 

in the SL. This subtree serves as a 'bridge-builder' to eventually connect two or more o f 

the disjoint subtrees in the SL. It is the generation o f this type o f subtree that leads to less 

than optimal solutions. Poor selection criteria when generating these subtrees can result 

in adding many more non-Steiner vertices to the solution tree R than would otherwise 

occur.

The following steps will generate the two valid types o f subtrees mentioned

above.

1) I f  the pick list PL is empty then an error has occurred.

2) From the PL, remove the first vertex and make it NS;.

3) Using the edge-list of NS; in the NSNL:

a) Locate the first vertex marked connected in the SCT.

b) Make this vertex Wa and store its subtree numbers) in qo. Note: qo 

should be able to hold more than one subtree number since any vertex 

can be a member o f more than one subtree in the SL.
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4) Place the vertices NSi and Wa into a new subtree Pk in the subtree list SL as 

follows: the root vertex NSi and Wa as a  leaf.

5) Using the edge-list o f NSi in the NSNL, for every vertex Wj, j  ^  a,  add Wj 

to Pk if:

a) Wj is marked selected but not connected in the SCT  AND:

b) Wj is not a member o f  any subtree in qo.

6) I f  no Wj, j  =£ a,  was added to the subtree Pk in the previous step then

proceed to (15).

7) In the SCT:

a) For N ^:

i) Increment the subtree membership count.

ii) Add k to the list of subtrees containing the vertex.

iii) Mark the vertex as selected if  it is not already so marked.

b) For all Wj, j  = a included, added to Pk:

i) Increment the subtree membership count.

ii) Add k  to the list of subtrees containing the vertex.

8) For all W), j  =  a included, added to Pk:

a) If Wj \in SNL then:

i) Delete NS; from the edge-list of Wj.

ii) In the NSNL for NS;:

■ Decrement the Steiner vertex count.

■ Decrement the total vertex count.

■ Delete Wj from the edge-list.
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b) I f  Wj \in NSNL then:

i) Decrement the total vertex count o f NSi.

ii) Delete Wj from the edge-list o f  NSi.

iii) Increment the total selected count of Wj.

iv) Decrement the total vertices count of Wj.

v) Delete NSi from the edge-list o f Wj.

9) For each remaining Wi in the edge-list o f NSi, increment the total selected 

count.

10) Traverse the subtree P* using the method described in Step 4, Section 2.7.5.

11) If  R  has been generated then proceed to Step 7, Section 2.7.8.

12) Perform Step 5 - Single Edge Connection, Section 2.7.6.

13) Regenerate the pick list PL using the method described earlier.

14) Proceed to substep (1).

15) (The new subtree Pk consists o f only two vertices, NSi and Wa, and the edge 

that connects them. No traversal is required or needed in this case since two 

disjoint subtrees are not being joined.) The second valid subtree type has 

been generated.

a) In the NSNL:

i) For Wa:

■ Decrement the total vertex count.

■ Delete NSi from the edge-list.

■ Increment the total selected count.
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ii) For NSii

■ Decrement the total vertices count.

■ Delete Wa from the edge-list.

■ For each remaining Wt in the edge-list, increment the

total selected count and the total connected count.

b) In the SCT:

i) For Wa:

■ Increment the subtree membership count.

■ Add k  to the list o f  subtrees containing the vertex.

ii) For NSj:

■ Increment the subtree membership count.

■ Add k  to the list o f  subtrees containing the vertex.

■ Mark the vertex as selected.

■ Mark the vertex as connected.

16) Regenerate the pick listPZ, using the method described earlier.

17) Proceed to substep (1)

The data describing the solution tree R  can be found in the SCT  and the SL. The 

solution tree will be composed o f those vertices in the SCT that are marked connected. 

The edges that connect these vertices will be listed in those subtrees in the subtree list SL 

that contain the aforementioned vertices. To generate the actual solution tree R, simply 

traverse the SCT  and the SL and list the tree components as they are encountered.
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Table 2.10 The data structures after the Non-Steiner Vertex Selection step and a 
traversal o f the subtrees.

Si Edge List

1 □
2 9 □
3 □
4 □

#S # v #sel #con NSi Edge List

0 1 2 0 5 6 □
0 2 1 2 6 5 9 □
0 0 3 0 7 □
0 0 2 0 8 □
0 1 2 1 9 6 □

Pk Vertex (edge) List

0 8 1 2 □
1 5 4 □
2 7 3 □
3 5 7 □
4 9 7 2 □

vertex # 1 2  3 4 5 6 7 8 9

selected

connected

# o f subtrees 1 2 1 1 2 0 3 1 1

subtree list 0 0,4 2 1 1,3 - 2,3,4 0 4
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2.7.8 Step 7 - Solution Tree Output

Before the components o f R  can be output, the solution must be examined for 

non-Steiner vertex leaves. Any such leaf that is found in the solution tree R  can be 

discarded. These vertices can be discarded without damage to the solution tree R  because 

the only vertex that can be a valid leaf in a tree created with this algorithm is a Steiner 

vertex.

This is due to the nature o f the problem being solved, namely, that there be no 

edges connecting Steiner vertices to each other on the graph G. This requires that each 

pair o f Steiner vertices be connected in R  by at least one non-Steiner vertex, making such 

non-Steiner vertices the 'root' vertex o f that particular subtree Pk when it is generated by 

this algorithm. These 'root' vertices are themselves connected to form the solution tree R 

through the addition o f single edges and\or subtrees consisting o f one new non-Steiner 

vertex and two edges leading to non-Steiner vertices previously selected as members of 

other subtrees in the SL.

Due to this process it can be seen that every Steiner vertex in the solution tree R 

will be a leaf. It can also be seen that every non-Steiner vertex in R  will have at least two 

neighbors in the tree when these vertices actually serve to connect the Steiner vertices 

present. Therefore, any non-Steiner vertex in R  that is a leaf does not connect any two 

subtrees in the SL nor does it connect a Steiner vertex to R. Thus, such vertices can be 

eliminated from R  safely.

To check for, and delete, any non-Steiner vertex leaves in the solution tree R, 

perform the following substeps:
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1) For every non-Steiner vertex NSi marked connected in the SCT:

a) I f  NS,- is a member o f  two or more subtrees then NSi cannot be a leaf 

in the solution tree R.

b) If  NSi is a member o f  only one subtree Px then:

i) If  Px is composed o f  more than two vertices and one edge 

then NSi is not a leaf in R.

ii) If  Px is composed o f  two vertices and one edge only then NSi 

is a leaf Lf and can be listed for deletion from R.

c) If  any leaves Lf were found in the previous substep then delete them 

from the solution tree R  as follows:

i) In the SCT, for Lf:

■ From the subtree list, let Px represent the subtree 

containing the leaf Lf to be deleted and let Wif 

represent the second vertex in Px.

■ Unmark the vertex as selected.

■ Unmark the vertex as connected.

■ Set the number o f  subtrees count to zero.

■ Delete the subtree list.

ii) In the SCT, for Ŵ -:

■ Decrement the number o f  subtrees count.

■ Delete the subtree number x  (representing the subtree 

Px) from the subtree list.

iii) In the SL, delete Px.
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To generate the Solution Tree R, do the following:

1) Using the SCT:

a) Every vertex marked connected is a member o f  R.

b) For every vertex marked connected, add the numbers in its subtree list 

to a temporary subtree list TSL i f  they are not already members of 

TSL.

2) While the temporary subtree list TSL is not empty, generate the list o f edges 

in R as follows:

a) Get a subtree number k  (for Pk) from the TSL.

b) From Pk in the SL, designate the first vertex as root and the remaining 

vertices as Wj.

c) For every Wj in Pk, generate the vertex pairs representing the edges in 

R  as (root, Wj).

2.8 Performance Analysis 

This section is under complete review. The original analysis showed this 

algorithm to be 0(E) in the worst case. However, this algorithm has been modified since 

the original version was developed. With the corrections and alterations made to the 

original algorithm taken into account, it appears that the Steiner Tree Algorithm as 

presented in this work is 0(VE) in the worst (and best) case.
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Vertices Edges

1,2,3,4,5,7,8,9
(8,1)
(8,2)
(5,4)
(7,3)
(5.7)
(9.7) 
(9,2)

Figure 2.2 The solution tree R  generated by the algorithm.

2.9 Future Work

Further testing is required to determine when an optimal solution can be generated 

as well as under what conditions and to determine the types o f sub optimal solutions that 

can be generated including bounds on how far from optimal such solutions can be. 

Additional future work involves developing better methods of choosing the non-Steiner
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vertex to accompany the single Steiner vertex chosen dining the first step and the 

choosing the non-Steiner vertex and edges in the last step o f the algorithm. Research to 

reduce the bookkeeping effort and overhead is also being considered for the future.

2.10 Conclusion

We have presented and analyzed a relatively simple bookkeeping algorithm for 

determining the shortest tree that connects the Steiner vertices in a given graph where the 

edges are o f  unit length. From the testing done, it has been found that this algorithm will 

often yield an near-optimal solution when care is taken in the labeling o f the vertices. 

Variation from optimality has been found to occur primarily from poor vertex numbering 

schemes and from poor vertex selections made when adding individual Steiner vertices to 

the SL during the Steiner vertex selection step.
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APPENDIX A

A SECOND WORKED EXAMPLE OF THE STEINER ALGORITHM

7 8 9

o -

11

- o -

12

- o -

13

- o

T
3

T
15

- o -

16

- o

10

14

Figure A. 1 The graph G for the appendix A example further illustrating the operation
of the Steiner algorithm.
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Table A. 1 The Steiner Node List (SNL), the Non-Steiner Node List (NSNL), the Pick 
List (PL), and the Subtree List (SL) after the first Steiner Node selection step has been 
completed.

Si Edge List
1 7 □
2 6 10 □
3 11 15 □
4 14 16 □

#S # v #sel #con NSi Edge List
0 2 1 0 5 6 8 □
1 3 1 0 6 2 5 9 □
1 3 1 0 7 1 8 11 □
0 4 1 0 8 5 7 9 12 □
0 4 0 0 9 6 8 10 13 □
1 3 0 0 10 2 9 14 □
1 3 0 0 11 3 7 12 □
0 4 0 0 12 8 11 13 15 □
0 4 0 0 13 9 12 14 16 □
1 3 0 0 14 4 10 13 □
1 3 0 0 15 3 12 16 □
1 3 0 0 16 4 13 15 □

PL 10 11 14 15 16 □

Pk Vertex (edge) List
0 5 1 □
1 □
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Table A.2 The Select/Connect Table (SCT) after the first Steiner Node selection step 
has been completed.

vertex # 1 2  3 4 5 6 7 8 9 10

selected

connected
# o f subtrees 1 0 0 0 1 0 0 0 0 0
subtree list 0 0 - - 0 - - - - -

vertex # 1 2  3 4 11 12 13 14 15 16

selected
connected

# of subtrees 1 0 0 0 0 0 0 0 0 0
subtree list 0 0 - - - - - - - -
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Table A.3 The data structures (SNL, NSNL, PL, and SL) after the second Steiner Node
selection step has been completed.

Si Edge List
1 7 □
2 10 □
3 11 15 □
4 14 16 □

#S # v #sel #con NSi Edge List
0 2 2 0 5 6 8 □
0 2 2 0 6 5 9 □
1 3 1 0 7 1 8 11 □
0 4 1 0 8 5 7 9 12 □
0 4 1 0 9 6 8 10 13 □
1 3 1 0 10 2 9 14 □
1 3 0 0 11 3 7 12 □
0 4 0 0 12 8 11 13 15 □
0 4 0 0 13 9 12 14 16 □
1 3 0 0 14 4 10 13 □
1 3 0 0 15 3 12 16 □
1 3 0 0 16 4 13 15 □

PL 10 11 14 15 16 □

Pk Vertex (edge) List
0 5 1 □
1 6 2 □
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Table A.4 The Select/Connect Table (SCT) after the second Steiner Node selection step 
has been completed.

vertex # 1 2  3 4 5 6 7 8 9 10

selected s

connected
# o f subtrees 1 1 0 0 1 l 0 0 0 0
subtree list 0 1 - - 0 l - - - -

vertex # 1 2  3 4 11 12 13 14 15 16

selected

connected
# o f subtrees 1 1 0 0 0 0 0 0 0 0
subtree list 0 1
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Table A.5 The data structures (SNL, NSNL, PL, and SL) after the third Steiner Node 
selection step has been completed.

Si Edge List
1 7 □
2 10 □
3 15 □
4 14 16 □

#S # v #sel #con NSi Edge List
0 2 2 0 5 6 8 □
0 2 2 0 6 5 9 □
1 3 2 0 7 1 8 11 □
0 4 1 0 8 5 7 9 12 □
0 4 1 0 9 6 8 10 13 □
1 3 1 0 10 2 9 14 □
0 2 1 0 11 7 12 □
0 4 1 0 12 8 11 13 15 □
0 4 0 0 13 9 12 14 16 □
1 3 0 0 14 4 10 13 □
1 3 1 0 15 3 12 16 □
1 3 0 0 16 4 13 15 □

PL 14 15 16 □

Pk Vertex (edge) List
0 5 1 □
1 6 2 □
2 11 3 □
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Table A.6 The Select/Connect Table (SCT) after the third Steiner Node selection step 
has been completed.

vertex # 1 2  3 4 5 6 7 8 9 10

selected S

connected
# of subtrees 1 l l 0 1 1 0 0 0 0
subtree list 0 l 2 - 0 1 - - - -

vertex # 1 2  3 4 11 12 13 14 15 16

selected V"

connected
# of subtrees 1 1 1 0 1 0 0 0 0 0
subtree list 0 1 2 - 2 - - - - -
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Table A. 7 The data structures (SNL, NSNL, PL, and SL) after the fourth Steiner Node
selection step has been completed.

Si Edge List
1 7 □
2 10 □
3 15 □
4 16 □

#S # v #sel #con NSi Edge List
0 2 2 0 5 6 8 □
0 2 2 0 6 5 9 □
1 3 2 0 7 1 8 11 □
0 4 1 0 8 5 7 9 12 □
0 4 1 0 9 6 8 10 13 □
1 3 0 10 2 9 14 □
0 2 1 0 11 7 12 □
0 4 1 0 12 8 11 13 15 □
0 4 1 0 13 9 12 14 16 □
0 2 1 0 14 10 13 □
1 3 1 0 15 3 12 16 □
1 3 1 0 16 4 13 15 □

PL 15 16 □

Pk Vertex (edge) List
0 5 1 □
1 6 2 □
2 11 3 □
3 14 4 □
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Table A.8 The Select/Connect Table (SCT) after the fourth Steiner Node selection step 
has been completed.

vertex # 1 2  3 4 5 6 7 8 9 10

selected S

connected
# o f subtrees 1 1 1 1 1 l 0 0 0 0
subtree list 0 1 2 3 0 l - - - -

vertex # 1 2  3 4 11 12 13 14 15 16

selected v '

connected
# o f subtrees 1 0 0 1 0 0
subtree list 2 - - 3 - -
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Table A.9 The data structures (SNL, NSNL, PL, and SL) after the single edge
connection step has been completed.

Si Edge List
1 7 □
2 10 □
3 15 □
4 16 □

#S # v #sel #con NSi Edge List
0 1 2 0 5 8 □
0 1 2 0 6 9 □
1 3 2 1 7 1 8 11 □
0 4 1 1 8 5 7 9 12 □
0 4 1 1 9 6 8 10 13 □
1 3 1 10 2 9 14 □
0 2 1 0 11 7 12 □
0 4 1 0 12 8 11 13 15 □
0 4 1 0 13 9 12 14 16 □
0 2 1 0 14 10 13 □
1 3 1 0 15 3 12 16 □
1 3 1 0 16 4 13 15 □

Pk Vertex (edge) List
0 5 1 □
1 6 2 □
2 11 3 □
3 14 4 □
4 5 6 □
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Table A. 10 The Select/Connect Table (SCT) after the single edge connection step has 
been completed.

vertex # 1 2  3 4 5 6 7 8 9 10

selected

connected
# o f subtrees 1 1 1 1 2 2 0 0 0 0
subtree list 0 1 2 3 0,4 1,4 - - - -

vertex # 1 2  3 4 11 12 13 14 15 16

selected
connected

# o f subtrees 1 0 0 1 0 0
subtree list 2 - - 3 - -
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Table A. 11 The data structures (SNL, NSNL, PL, and SL) after the first non-Steiner
vertex selection step has been completed.

Si Edge List
1 □
2 10 □
3 15 □
4 16 □

#S # v #sel #con NSi Edge List
0 1 2 0 5 8 □
0 1 2 0 6 9 □
0 1 2 1 7 8 □
0 4 2 2 8 5 7 9 12 □
0 4 1 1 9 6 8 10 13 □
1 3 2 1 10 2 9 14 □
0 1 2 0 11 12 □
0 4 1 0 12 8 11 13 15 □
0 4 1 0 13 9 12 14 16 □
0 2 1 0 14 10 13 □
1 3 1 0 15 3 12 16 □
1 3 1 0 16 4 13 15 □

Pk Vertex (edge) List Pk Vertex (edge) List
0 5 1 □ 4 5 6 □
1 6 2 □ 5 7 1 11 □
2 11 3 □
3 14 4 □

PL 10 □
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Table A. 12 The Select/Connect Table (SCT) after the first non-Steiner vertex selection 
step has been completed.

Vertex # 1 2  3 4 5 6 7 8 9 10

selected s y s

connected s s s
# o f subtrees 2 1 1 1 2 2 1 0 0 0
subtree list 0,5 1 2 3 0.4 1,4 5 - - -

vertex # 1 2  3 4 11 12 13 14 15 16

selected

connected v '

# o f subtrees 2 0 0 1 0 0
subtree list 2,5 - - 3 - -
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Table A. 13 The data structures (SNL, NSNL, PL, and SL) after the second non-Steiner
vertex selection step has been completed.

Si Edge List
1 □
2 □
3 15 □
4 16 □

#S # v #sel #con NSi Edge List
0 1 2 0 5 8 □
0 1 2 0 6 9 □
0 1 2 1 7 8 □
0 4 2 2 8 5 7 9 12 □
0 4 2 2 9 6 8 10 13 □
0 1 2 1 10 9 □
0 1 2 0 11 12 □
0 4 1 0 12 8 11 13 15 □
0 4 1 0 13 9 12 14 16 □
0 1 2 0 14 13 □
1 3 1 0 15 3 12 16 □
1 3 1 0 16 4 13 15 □

Pk Vertex (edge) List Pk Vertex (edge) List
0 5 1 □ 4 5 6 □
1 6 2 □ 5 7 1 11 □
2 11 3 □ 6 10 2 14 □
3 14 4 □

PL 10 □
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Table A. 14 The Select/Connect Table (SCT) after the second non-Steiner vertex 
selection step has been completed.

vertex # 1 2  3 4 5 6 7 8 9 10

selected

connected s s
# of subtrees 2 2 1 1 2 2 1 0 0 1
subtree list 0,5 1,6 2 3 0,4 1,4 5 - - 6

vertex # 1 2  3 4 11 12 13 14 15 16

selected

connected
# o f subtrees 2 0 0 2 0 0
subtree list 2,5 - - 3,6 - -
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Vertices Edges

(7,1)
1,2,3,4, (7,11)
5,6,7, (11,3)

10,11,14 (5,1)
(5,6)
(6,2)

(10,2)
(10,14)
(14,4)

Figure A.2 The solution tree R  generated by the algorithm.
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