
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of th is reproduction is dependen t upon the quality of the
copy subm itted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TWO NEW ALGORITHMS FOR CLASSICAL

PROBLEMS IN COMPUTER SCIENCE

by

John Gerard Howe

Bachelor o f Science
University o f Nevada, Reno

1982

A thesis submitted in partial fulfillment
o f the requirements for the

Master of Science Degree
Department of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 1403078

___ ®

UMI
UMI Microform 1403078

Copyright 2001 by Bell & Howell Information and Learning Company.
Ail rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TTNTV T hesis Approval
The Graduate College
University o f Nevada, Las Vegas

N ovem ber 2 7 ,_______ , 200 0

The Thesis prespared by

_______________________________ Joh n G. Howe__

Entitled

Two New A lg o r i t h m s f o r C l a s s i c a l P rob lem s i n Com puter S c ie n c e ____________

is approved in - partial fulfillment of the requirements for the degree of

M a ste r o f S c ie n c e

M a
Examination Comrrnittee Member

Examination Comrrnittee Member

Gradiidte College Faculty Repres iative

Examination Committee Chair

Dean o f the Graduate College

PR/1017-53/1-00 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

Two New Algorithms For Classical Problems
in Computer Science

by

John G. Howe

Dr. Evangelos Yfantis, Examination Committee Chair
Professor o f Computer Science

University o f Nevada, Las Vegas

This thesis presents two algorithms dealing with problems in two classic

algorithm areas in computer science. The first algorithm presents a simple solution to the

selection problem. The sequential computing model form o f this selection algorithm is

presented first followed by a general parallel computing model version.

The second algorithm is a relatively simple bookkeeping approximation solution

to the Steiner tree problem in graphs. The problem presented deals with determining the

shortest tree connecting Steiner nodes in a graph that has no direct connections between

the Steiner nodes. Both algorithms are described and analyzed in detail with an

appropriate running example to illustrate the actions o f the algorithms.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT..iii

LIST OF TABLES... v

LIST OF FIGURES...vii

ACKNOWLEDGEMENTS.. viii

CHAPTER 1 BIN SELECTION ALGORITHM...1
1.1 The Selection Problem... 2
1.2 The Classic Algorithm Solution... 3
1.3 The Bin Selection Algorithm Solution.. 4
1.4 A Common Illustrating Example..6
1.5 The Sequential Computing Model Version...6
1.6 Basis and Correctness o f the Algorithm.. 16
1.7 Performance Analysis.. 19
1.8 The Parallel Computing Model Version..20
1.9 Modifications, Other Uses, and Future Work...38
1.10 Conclusion.. 43

CHAPTER 2 STEINER TR EES...45
2.1 Previous W ork...45
2.2 A New Steiner Tree Algorithm..46
2.3 General Description.. 47
2.4 Basic Definitions.. 49
2.5 An Example Problem..50
2.6 The Required Data Structures..51
2.7 The Algorithm ...55
2.8 Performance Analysis.. 80
2.9 Future W ork...81
2.10 Conclusion... 82

APPENDIX A A SECOND WORKED EXAMPLE OF THE STEINER ALGORITHM
..83

BIBLIOGRAPHY...99

VITA.. 102

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

Table 1.1 Bin contents after the first pass through S has been completed...................... 12
Table 1.2 Final accumulator values for the first pass through S...................................... 13
Table 1.3 Range o f eliminated elements on first pass by K value and the bin location

o f the desired K* element..15
Table 1.4 Positions in S where each processor is to start copying the elements o f S to

local memory............................. 28
Table 1.5 Bin contents, by processor, after the first pass through S has been

completed... 29
Table 1.6 Local memory bin element counts and shared memory accumulator values

after the first pass element distribution has been completed.........................30
Table 1.7 The order in which the processors write their bin counter values to the

accumulators in shared memory...31
Table 1.8 Final results of steps 2 and 3 from the first pass through S33
Table 1.9 Final accumulator values for the first pass through S......................................34
Table 1.10 Range of eliminated elements on first pass by K value...................................34
Table 2.1 The Steiner Node List (SNL) after initialization..52
Table 2.2 The Non-Steiner Node List (NSNL) after initialization...................................53
Table 2.3 The first Pick List (PL) after initialization..53
Table 2.4 The Subtree List (SL) after initialization.. 54
Table 2.5 The Select/Connect Table (SCI) after initialization....................................... 54
Table 2.6 The data structures after the first Steiner Node Selection step.......................62
Table 2.7 The data structures after the second Steiner Node Selection step..................63
Table 2.8 The data structures after the third Steiner Node Selection step......................64
Table 2.9 The data structures after the Single Edge Connection step and a traversal o f

the subtrees.. 71
Table 2.10 The data structures after the Non-Steiner Vertex Selection step and a

traversal o f the subtrees.. 77
Table A. 1 The Steiner Node List (SNL), the Non-Steiner Node List (NSNL), the Pick

List (PL), and the Subtree List (SL) after the first Steiner Node selection
step has been completed... 84

Table A.2 The Select/Connect Table (SCT) after the first Steiner Node selection step
has been completed... 85

Table A. 3 The data structures (SNL, NSNL, PL, and SL) after the second Steiner
Node selection step has been completed.. 86

Table A.4 The Select/Connect Table (SCT) after the second Steiner Node selection
step has been completed... 87

Table A.5 The data structures (SNL, NSNL, PL, and SL) after the third Steiner Node
selection step has been completed... 88

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table A.6

Table A.7

Table A. 8

Table A.9

Table A. 10

Table A. 11

Table A. 12

Table A. 13

Table A. 14

The Select/Connect Table (SCT) after the third Steiner Node selection step
has been completed.. 89
The data structures (SNL, NSNL, PL, and SL) after the fourth Steiner Node
selection step has been completed...90

The Select/Connect Table (SCT) after the fourth Steiner Node selection
step has been completed.. 91

The data structures (SNL, NSNL, PL, and SL) after the single edge
connection step has been completed.. 92

The Select/Connect Table (SCT) after the single edge connection step has
been completed... 93
The data structures (SNL, NSNL, PL, and SL) after the first non-Steiner
vertex selection step has been completed..94
The Select/Connect Table (SCT) after the first non-Steiner vertex selection
step has been completed.. 95
The data structures (SNL, NSNL, PL, and SL) after the second non-Steiner
vertex selection step has been completed..96
The Select/Connect Table (SCT) after the second non-Steiner vertex
selection step has been completed..97

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4
Figure 2.1

Figure 2.2
Figure A. 1

Figure A.2

LIST OF FIGURES

Initial list S o f data items for the example illustrating the use o f the Bin
Selection Algorithm... 6
Initial determination o f the number o f bins and the bin ranges for the
example illustrating the use o f the sequential version o f the Bin Selection
Algorithm .. 11
Initial determination o f the number o f processors and bins and the bin
ranges for the example illustrating the use of the parallel version o f the Bin
Selection Algorithm...27
Copy the selected bin contents (bin 0) to shared memory..............................36
Example graph G with Steiner Nodes (donuts) used to illustrate the
operation of this algorithm... 51
The solution tree R generated by the algorithm...81
The graph G for the Appendix A example further illustrating the operation
o f the Steiner algorithm.. 83
The solution tree R generated by the algorithm... 98

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to thank Dr. Kia Makki, Ph.D., for his introduction and instruction

into the fascinating world o f algorithms. His depth of knowledge and ability to teach this

material to his students in a manner so as to inspire them to further investigate this field

was instrumental in my being able to produce this work. Furthermore, it was Dr. Makki

who first proposed the ideas that were later developed into the two algorithms presented

here. Without his inspiration and guidance I would never have though to look for

alternative solutions to classical computer science problems, let alone gone on to develop

two such algorithmic solutions myself. Thank you Dr. Maklri, wherever you are.

I would also like to thank Dr. Evangelos Yfantis, Ph.D., for his unwavering

support and encouragement during some very difficult times. Originally starting my

work under Dr. Yfantis, he was gracious and supportive when I later changed to work

under Dr. Makki, but his willingness to reassume the positions of advisor and thesis

committee chairman was beyond value and the call o f duty. Thank you just does not

adequately express the gratitude I feel for such support.

Finally, I would like to thank everybody else who has supported me over the

years I have been at UNLV. In particular, I would like to thank the members o f my thesis

committee for their forbearance during some difficult personal and professional times and

for sticking with me while I got through all o f this. And always, I would like to thank my

parents for their support without which I would never have had the opportunity to start an

advanced degree program, let alone to have finally finished one.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1

BIN SELECTION ALGORITHM

A thorough knowledge o f algorithm development and analysis is an important

part o f any computer science education. Depending upon the goals o f the course any

number o f classical algorithms may be studied. One such algorithm is the Selection

Problem. An 0(N) solution to this problem has been available for many years [3] with a

number o f incremental improvements having been made since its introduction. It has

been observed by many who have worked with this problem that further improvement of

the time bound o f the classic algorithm could probably be achieved.

Searching for such an improvement resulted in the creation of the Bin Selection

Algorithm. While looking for ways to preprocess the data provided to the classic

algorithm it was discovered that one such preprocessing operation, similar to the bucket

sort, enabled the elimination of unneeded data items while ensuring that the desired

element was not one o f the items eliminated. Further examination o f this 'preprocessing'

step revealed that continued use of this method would, in fact, solve the selection

problem. Once it was confirmed that this method would always generate a solution, a

formal algorithm was generated replacing, in its entirety, the classic solution to the

selection problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

The classic solution to the selection problem is 0(kN), where k is approximately

2.5. Under most circumstances, the BSA is a well-behaved algorithm whose time bound

is also O(kN), where k usually lies between 1.0 to approximately 1.7. In the worst case,

the unmodified behavior o f this algorithm becomes 0 (n 2). However, this case can be

easily detected and subsequently handled so that the overall cost o f the algorithm is still

linear. Depending upon the method chosen for dealing with this situation, a final value o f

k will often lay between 2.0 to 3.0.

The Bin Selection Algorithm (BSA) is a substantially easier algorithm to teach,

understand, and program. It was originally developed as an algorithm for parallel

machines. However, it is such a simple algorithm that a sequential implementation is

trivial, primarily involving the removal o f steps unique to parallel computing systems.

In this chapter, the Selection Problem is formally introduced. This is followed by

a brief description o f the classical solution to the problem. The sequential version o f the

Bin Selection Algorithm is then presented and the overall algorithm and its behavior is

described and analyzed in depth. The parallel version o f the BSA is described next with

attention being paid specifically to those issues unique to a parallel system

implementation. Finally, this is followed by future work, a discussion of the various

modifications, and additional uses o f this algorithm.

1.1 The Selection Problem

The Selection Problem has a wide variety o f applications in computer science and

statistics. O f particular interest is the special case o f finding the median. The Selection

Problem, simply stated, is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

Given the sequence S o fN elements and an integer K, where 1 < K < N , f in d the

K* largest or smallest element in S.

The Selection problem has been well studied in the literature [13,15]. An optimal

sequential divide-and-conquer algorithm exists for its solution which runs in O(n) time in

the worst case [3]. Also, Floyd and Rivest [7] discuss the sampling approach that finds

the median in 1.5n expected comparisons. Recently, a number o f parallel algorithms

have been devised for this problem [1,2,5,13,18], Akl [1] was the first to come up with a

cost optimal parallel version o f the algorithm given in [3],

1.2 The Classic Algorithm Solution

The classic solution to the selection problem has been well studied and presented

in many algorithms books. Therefore, only a cursory presentation will be made here.

The reader of this work is encouraged to refer to virtually any work on computer

algorithms should a more detailed presentation of the classic algorithm be desired.

In general, like the Bin Selection Algorithm, the classic solution seeks to partition

the data set such that the desired K* element can be found directly (rare but possible) or

that some o f the elements in the set can be eliminated from further consideration during

the search for K. This is accomplished by creating a series o f subsets containing an odd

number o f elements and then sorting the elements in each subset. Using the median

values from all o f the subsets, a 'median o f medians' value is determined.

The median o f medians value is critical to the partitioning process o f the classic

algorithm. By reordering the sorted subsets around this value it can be determined which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

elements are known to be greater than the median o f medians and which elements are

known to be smaller. I f the number o f elements known to be greater is equal to the value

K - 1 then the median o f medians element is the desired K* element. If the number o f

elements known to be greater is less than K then these elements can be discarded since

the K* element being sought cannot possibly be in this subset.

In most implementations, the classic algorithm is repeated on the new, reduced

data set once the elements mentioned above have been discarded. Modifications to the

algorithm exist that allow for the removal o f another group o f elements known to be

smaller than the median o f medians under conditions similar to those described above for

the larger elements. During each iteration, a similar number o f elements are removed

from further consideration until the K* element is found directly or until the number of

elements remaining is such that the desired element can be found by sorting the elements

and picking it directly.

The number o f elements eliminated during each iteration is, at best,

approximately thirty percent (30%) in the case o f discarding only the larger elements. If

both the larger and smaller element subsets are eliminated then this value rises to

approximately fifty percent (50%). The exact number o f elements discarded during any

single iteration o f the classic algorithm is due to the location o f the median of medians

value in the data set and the size o f the subsets used by the algorithm.

1.3 The Bin Selection Algorithm Solution

The Bin Selection Algorithm (BSA) allows for the selection o f the K111 largest, or

smallest, element in a list without sorting any of the elements in the list, S. Instead, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

range o f possible element values is dlivided among a series o f bins such that the subranges

assigned to the bins is disjoint. T hen it uniquely places each element in the bin whose

subrange includes that particular element's value. A count o f the number o f elements in

each bin is kept during the placem ent process. When all o f the elements o f S have been

placed in the appropriate bin, the bin that contains the desired K^1 element can be

determined. If the indicated bin ccontains more than one element, this process can be

repeated. If the count o f elements im the bin is sufficiently low then the elements can be

sorted and the K* element picked trivially.

In general, the BSA operates by discarding all elements o f S that have been

determined, conclusively, to not be th e K111 element. Thus each succeeding iteration of

this algorithm operates on a subset o f those members o f S that were present during the

preceding iteration. Dependent upom the distribution of the elements in S and the ranges

assigned to the bins, an average elenuent removal rate o f 60% to 80% per iteration is not

unreasonable and can be easily achieved.

This is accomplished, in part, because the BSA allows for the incorporation of

any knowledge about the list that m ay be available. For example, simply knowing the

actual minimum and maximum valuers in the list serves to restrict the number of bins that

will be needed. If some knowledge o f the distribution o f the values is available, then the

number o f bins collecting a certaim range of values can be increased or decreased

accordingly. Both o f these items m ake it possible to discard more elements per iteration

than would be possible if this information were not known.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

1.4 A Common Illustrating Example

To illustrate the performance o f this algorithm during each step, the following

example is provided. A set o f integers S is given as shown below in Figure 1.1. The size

o f S, « = |<S| is 25.

3 15 49 17 79 62 31 95 26 51 99 7 37

75 33 57 1 82 11 43 22 87 55 91 14

Figure 1.1 Initial list S' o f data items for the example illustrating the use o f the Bin
Selection Algorithm.

1.5 The Sequential Computing Model Version

The sequential version o f the BSA is an uncomplicated and easy to implement

algorithm. Since there is only one processor and memory resource available, there is no

need for the processor synchronization pauses and memory conflict avoidance schemes

that will be required in the parallel computing model version.

1.5.1 Resource Requirements

With the sequential version o f the BSA the only resource that needs to be

managed is memory. The maximum amount o f memory needed by this algorithm

assumes that the implementer desires to keep everything in memory during processing.

In this case, enough memory to hold the entire list, S, bin storage for the members o f S,

and one accumulator per bin is required. Therefore, the maximum amount o f memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

required by this algorithm is (2 x S) +{bins + 1). The extra accumulator is used during the

summation process when the algorithm determines the location o f the desired K111 element

o f S.

The minimum amount o f memory required by the algorithm is the amount needed

for the accumulators, {bins + 1). In this event, it is assumed that the storage for the list, S,

and as well as the contents o f the individual bins is provided for elsewhere. The actual

number o f bins required for a solution using the BSA will be determined in the

initialization step as described in Section 1.5.4.

1.5.2 Algorithm Description

The sequential BSA is an six step solution to the general selection problem.

These steps can be summarized as follows:

Step 0 - Initial Assumptions

Step 1 - Initialization

Step 2 - Element Distribution

Step 3 - Locate the K* Element Bin

Step 4 - Process/Terminate Logic

Step 5 - Result(s) Processing

Each step is described in detail below. Throughout this discussion the common

example will be used to illustrate the operations performed during each step o f the

sequential version o f the algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I

8

1.5.3 Step 0 - General Assumptions and Knowledge

For the purpose o f this discussion, it is assumed that the following conditions

exist:

• The list is finite.

• Every element in the list S' is unique.

• The bounding values o f the elements in S are either known or can be estimated

with reasonable accuracy.

• All array or list indices start at zero.

• All o f the memory requirements mentioned earlier have been met.

Only the first assumption is actually required by this algorithm. Obviously, if the

list is not finite then no solution is possible. The remaining four assumptions have been

made so that the description and discussion o f the BSA in the following sections can be

simplified. As will become clear from the rest of this section, none of the remaining

assumptions must be met for the algorithm to function properly.

The assumptions about element uniqueness and bounds knowledge, while useful

in simplifying this discussion, are not absolute requirements for the successful use of the

BSA since initial knowledge o f the actual contents of the list, <S, is not required for a

solution using this algorithm. The BSA can handle the lack o f bounds knowledge at the

expense o f requiring more iterations to reach the solution. No additional memory or bins

are needed.

Furthermore, the elements in the list, S, need not be unique. It only needs to be

guaranteed that duplicate elements in the list, S, will be placed in the same bin. If it is

necessary to determine which instance o f a duplicated list member is the desired element

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

then the manner in which the elements are placed in their respective bins can be easily

modified so that this information can be preserved during Step 2.

The last two assumptions stated above have been made simplify the mechanics of

the algorithm. The array and list index start value reflects the method used to place the

elements in their respective bins and may change based upon the placement algorithm

used by the implementer. Storing all data and results in memory also simplifies this

presentation. Appropriately modified, the BSA can handle the violation o f any or all of

these assumptions easily. Further discussion o f the modifications mentioned in this

section is presented in Section 1.9.

1.5.4 Step 1 - Initialization

During this stage o f the BSA, the overall structure o f the solution to the given

problem is generated. O f importance to the efficient operation o f the algorithm is the

determination o f the total number o f bins needed. From this item the rest o f the required

initial data can be generated, namely, the bin content ranges and the element placement

value. These items are discussed below and illustrated with the example in Figure 1.2.

1.5.4.1 Determining the Number of Bins Required

Based upon the bounds information derived from S in step 0, a number of bins

will be generated. The minimum number o f bins recommended is the base 2 logarithm of

the maximum possible element value o f S. This value was originally selected as a

starting point for no particular reason but has been proven to be quite workable under

normal circumstances. Actually, any number o f bins greater than one will work if it can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

be guaranteed that at least two or the bins contain two or more members o f 5 during each

pass through the algorithm.

In general, however, the more bins that can be used the less time is required to

arrive at the desired solution since more o f the elements in S can be eliminated during

each pass through the algorithm. Thus, the maximum number o f bins to use depends on

several conditions. If sufficient memory is available then a number o f bins equal to the

range o f potential member values o f S' is usually desirable. In this case, each bin

represents a single value from the range and will contain only those members o f S o f that

value. Finding the desired K* element in this event is trivial since it will always be found

during the first pass through the algorithm.

The size o f the list, S, may also affect the number o f bins needed. When the list is

very large it may be necessary, if possible, to double the number o f bins indicated by the

above equation in order to maintain satisfactory performance o f the algorithm.

Obviously, the number of bins cannot exceed the range o f potential member values as

described above. Further simulation o f the BSA is required before a definitive answer

can be offered regarding the optimal minimum and maximum number o f bins to use.

1.5.4.2 Element Placement Method and Bin Range Determination

As presented here, the BSA uses the integer division function to place the

elements o f S' in the appropriate bin. In reality, any function that will allow every

element o f S to be uniquely placed in the bins will be satisfactory. This function will

typically be driven by the type o f data element (integer, real, etc.) that is contained in S.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

To determine the divisor value required, we take the maximum possible element

value and divide it by the number o f bins that will be used by the algorithm to generate a

solution for this particular list S. The ceiling o f this result is the individual bin range size

and is used to determine the range o f elements, by value, that each bin may contain. This

is shown in Figure 1.2 for the example illustrating the use o f the BSA.

To ensure that a maximum valued element will not be placed in a nonexistent bin, the

divisor value just obtained is multiplied by the number o f bins and the result is compared

to the maximum possible element value. If this result is greater than or equal to the

maximum possible element value then the number of bins is sufficient. If the result is

equal to the maximum possible element value then an extra bin must be generated. Only

maximum valued elements will eventually be placed in this bin.

Let S = 100 and S - =1v ^ max ****** w min

Let b = ["log, S m3x "j = ["fog, 100] - 7 bins required

Ar = [S „ . / * l = l S

Thus, the bin ranges are: BinO 0 - 1 4
Bin 1 1 5 -2 9
Bin 2 3 0 -4 4
Bin 3 4 5 -5 9
Bin 4 6 0 -7 4
Bin 5 7 5 -8 9
Bin 6 90 - 105

Figure 1.2 Initial determination o f the number of bins and the bin ranges for the
example illustrating the use o f the sequential version of the Bin Selection Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

1.5.4.3 Indirect Initialization

Should the situation occur where no information exists about the size of, or the

range o f values in, S then the implementer has two choices with respect to how the

needed information is obtained. First, obviously, the implementer can make a guess as to

the bin ranges and the number o f bins to be used. Efficiency will definitely be sacrificed

unless the guess is accurate but a solution will be generated if all o f the elements in S can

be placed in a bin (see the earlier discussion about maximum valued elements). If a

guess is not possible, or desirable, then an initial pass through S can be made that will

generate the needed information. Further discussion o f this modification and others can

be found in Section 1.9.

1.5.5 Step 2 - Element Distribution

Using the information generated in Step 1, the elements in S are placed into the

appropriate bin and the corresponding accumulator is incremented. In the case of the

illustrating example provided, integer division, using the value of br as shown in Figure

1.2 for the divisor, is used to place the members of S in the appropriate bins.

Table 1.1 Bin contents after the first pass through S has been completed.

Contents o f Bin #

0 1 2 3 4 5 6
3 15 31 49 62 79 95
7 17 37 51 75 99
1 26 33 57 82 91

11 22 43 55 87
14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

For example, the first member o f S, the value 3, is placed in bin 0 since 3/15 = 0 ,

where br = 15. The member 49 is placed in bin 3 because 49/15 = 3. The member 87 is

placed in bin 5 since 87/15 = 5 . Table 1.1 shows the contents o f each bin once all o f the

members o f S have been examined.

As each member o f S is placed in a bin, the accumulator corresponding to that

particular bin is incremented and reflects the total number o f elements that have been

placed in the bin. The accumulator value for each bin once all o f the members of S have

been examined is shown in Table 1.2.

Table 1.2 Final accumulator values for the first pass through S.

Bin 0 1 2 3 4 5 6

Total 5 4 4 4 1 4 3

1.5.6 Step 3 - Locate the K* Element Bin

Once all o f the members o f S have been placed in a bin, we can determine which

bin contains the desired K* element. This is accomplished by starting at the appropriate

end o f the list o f accumulator values and summing their values until the number of

elements in the sum equals or exceeds the value of K. The bin that is associated with the

last accumulator value added to the sum will be the bin that contains the element.

If the K* smallest element in S' is desired then the summation o f accumulator

values starts with bin 0, the bin holding the lowest valued elements o f S. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

accumulator value o f each succeeding bin is then summed until the total equals or

exceeds the value o f K. In a similar manner, the K* largest element can be found by

starting with the bin holding the largest valued elements o f S. When the sum m ation

process stops, the bin that contains the K* element has been determined. The desired

element is located in the last bin whose accumulator value was added to the sum.

For example, if we are searching for the 7th largest element o f S, then starting with

bin 6 we sum the accumulator values, moving down the list o f bins until the sum equals

or exceeds 7. In this case, bin 6 only holds 3 elements so the K = 7th largest element

cannot be in bin 6. Bin 5 holds 4 elements and the total number o f elements encountered

in our traversal o f the bin accumulator values is now 3 + 4 = 7. This result equals the

value we are searching for, 7. Therefore, we have found the bin containing the desired

element and can discard the contents o f all o f the other bins, a total o f 21 elements or

84% of the members o f S. Tablel.3 illustrates the percentage elimination of elements o f

S from further consideration using the illustrating example for various values o f K.

1.5.7 Step 4 - Process / Terminate Logic

With the location o f the K* element known, the elements that are stored in the

other bins can now be discarded. The proof of this claim is given in Section 1.6. The

value o f K may need to be adjusted, if necessary, to reflect the removal o f the discarded

elements so that the correct element will be selected relative to the original list S.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

Table 1.3 Range o f eliminated elements on first pass by £ value and the bin location
o f the desired K* element.

£
Value Location

Elements

Remaining Eliminated

1 < £ < 5 BinO 5 20 (80%)

6 < £ < 9 Bin 1 4 21 (84%)

10 < £ <13 Bin 2 4 21 (84%)

14 < £ < 1 7 Bin 3 4 21 (84%)

II i—* 00 Bin 4 1 24 (96%)

19 < £ < 2 2 Bin 5 4 21 (84%)

23 < £ < 25 Bin 6 3 22 (88%)

At this point in the BSA only one o f two situations can possibly exist. Obviously,

the bin known to hold the desired K* element has only one member o f S contained

therein. In this case, no further processing needs to be performed to find the element

and the algorithm can proceed directly to Step 5 (see section 1.5.8).

Otherwise, more than one element remains in the indicated bin. One o f these

elements is the K* element being sought. Should the number of elements remaining in

the bin be small, less than 10 or so, then the elements can be sorted and the desired

element determined trivially. The point at which the remaining elements should be sorted

is left for the implementer to decide. The BSA will yield correct results without regard to

the number o f elements in 5 as will a simple sort and pick operation.

If the decision is made to run the remaining elements through the BSA again then

several adjustments must be made before Steps 2 and 3 can be repeated. First, the

original members o f S are replaced with the members now residing in the bin known to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

contain the K* element. Next, the accumulators must be initialized to zero and the

initialization and setup information determined in Step 1 will need to be recalculated.

However, these calculations must reflect the altered problem that now exists. Typically,

the number o f bins needed will be reduced since a significant percentage o f the original

elements o f S will have been eliminated. Also, the range of values o f the remaining

elements o f 5 has likewise been reduced and may additionally limit the number o f bins

needed for the next round o f the BSA.

1.5.8 Step 5 - Result(s) Processing

The processing done in this step is trivial if only one K* element is to be found by

the BSA. Only the value of the K* element and any statistical information gathered by

the implementer needs to be output. However, with minor modification, this algorithm is

capable o f returning multiple K* largest or smallest element values and providing

additional information about the members o f the list, S. Further discussion of the

modifications to the BSA required to implement this capability, as well as other

algorithm modifications, are described in Section 1.9.

1.6 Basis and Correctness o f the Bin Selection Algorithm

The basis for this algorithm rises from three simple facts.

1) When searching any list for the K* largest element there must exist K -1

elements larger than the K element.

2) For the K* largest element o f a list o f size X there must exist X — K elements

that are smaller than the K* element.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

3) Since the list is finite and each element in the list is unique we can determine,

or make an informed guess about, the minimum and maximum possible values

for any particular list.

The proofs o f the first two facts are both obvious and trivial. Fact one is true

because to be the K* largest anything implies the existence o f K — 1 items that are larger

than the K111 item. I f fewer or more than K — 1 items exist in S that are larger than the K*

element then the element selected cannot possibly be the largest element o f S.

Likewise, fact two is true because to be the largest anything in a list o f X

elements implies the existence o f X — K items that are smaller than the K* item. If

fewer or more than X — K items exist in S that are smaller than the K* element then the

element selected cannot possibly be the K* largest element o f S. Similar arguments can

be made when searching for a K* smallest element of S.

The third fact is derived from the basic assumptions that were made about the list

S and its member elements. Obviously, i f the list is not finite then a solution will never

be found. If the implementer has any information about the nature of the elements in S,

knowledge o f the valid range o f values to be expected from the elements in S is the most

commonly available. Even if the implementer knows nothing about the valid range o f

values expected, a single pass through the members o f S recording the maximum and

minimum values encountered will provide the needed data for the BSA.

In either case, exact knowledge o f the range values is not required for the BSA to

operate properly. The implementer need only guarantee that every element in 5 will be

placed in a bin during the first pass o f the algorithm through S. So long as every member

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

o f S is accounted for during each pass, the BSA will be able to select the correct element

from S. The adjustments that are made in Step 5 before making another pass through the

remaining elements o f S will insure that this requirement is always met. Should it not be

possible to make such a guarantee then the maximum and minimum values o f the

elements in S must be determined as mentioned above before using the BSA.

The method used by the Bin Selection Algorithm to locate and identify the

desired K* element makes use o f all three facts above to partition S into three disjoint

subsets, one o f which is known to hold the element. From the first two facts, it can be

seen that if we can identify which elements belong to the K - 1 and X - K subsets of the

list and discard only the elements o f those subsets then we will be left with the K111

element. Sorting the list yields one such solution but it is costly and inefficient for all but

the smallest lists.

The third fact provides the limits for the partitioning o f the elements in S. Using

the maximum and minimum element values, a series o f contiguous, unique, and disjoint

subranges can be created that will cover the entire range o f possible values o f the

members o f S’. Direct assignment to a single subrange will allow the partial ordering of

the elements o f S without having to make any element to element comparisons. A 'bin' is

generated for each o f the subranges and each element of S is then placed into the bin

whose subrange includes the value o f that element. A count o f the number o f elements

placed into the bin is maintained during the placement process.

Once the placement process is complete, the bin containing the K* element can be

determined. This is accomplished by simply summing the number o f elements contained

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

in each bin until the sum equals or exceeds the value o f K. The last bin whose count was

added to the total contains the K* largest element.

With the determination o f the location of the K* largest element the partitioning

o f S has been accomplished. By the virtue o f the first two facts stated above and the

knowledge o f the location of the K* largest element, the remaining bins can be safely

assigned to the K - 1 and the X — K subsets. The contents o f these bins can now be

discarded because they do not contain the element that is being sought and will be of no

benefit to the solution in future processing. By adjusting the value o f K, if necessary, the

BSA can be rerun on the remaining elements of S until the K* element is found directly

or until so few elements remain that sorting become feasible.

1.7 Performance Analysis

The Bin Selection Algorithm, as described in earlier sections, behaves in a linear

fashion under most circumstances. However, its actual overall behavior is totally

dependent upon the distribution o f the elements in S and the distribution of the subranges

assigned to the bins. Any distribution o f elements and bin subranges that is uniform, or

approximately uniform, will always result in linear algorithm behavior. The further the

distribution o f elements strays from the uniform, the worse the behavior o f the algorithm.

With a uniform, or near uniform, element distribution in S and a uniform, or near

uniform, subrange distribution among the bins, only a single pass will need to be made

through all o f the elements of S. Each succeeding pass of the BSA operates upon an ever

decreasing subset o f S until the K* element is determined. In these cases, the time bound

of the Bin Selection Algorithm is 0(kN), where the value o f k has been found to typically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

lay between L0 and 1.7. These values correspond to an element discard rate of 60% or

greater during each pass o f the algorithm.

At its worst, the behavior o f the Bin Selection Algorithm is 0 (N 2). In this

circumstance, only a single element o f S is discarded during each pass and, at most,

N —1 passes are required to locate the K* element This is an easily detectable situation.

The modifications to the BSA required to account for this, and other, undesirable

situations is discussed in Section 1.9.

While element distributions that can lead to 0 (N 2) behavior are highly unlikely to

occur in most instances, convincing arguments can be presented as to the actual

occurrence in real-world data o f such distributions. The simplest to visualize is an

instance where most o f the data collected lies within a narrow range o f values but where a

few values, valid or erroneous (depending upon the nature o f the data collected), expand

the range of data values enormously. In such a case, the majority o f the uniformly

generated subranges would be empty with only a few (or ju st one) containing a

significant number o f elements from S. Thus, the unmodified behavior o f the BSA would

approach 0(N 2).

1.8 The Parallel Computing Model Version

The parallel version o f the Bin Selection Algorithm (pBSA) is a simple and

adaptable parallel algorithm for the selection problem. The model o f parallel

computation used is the concurrent-read exclusive-write (CREW) parallel random access

machine (PRAM). Memory conflicts are avoided without requiring the presence o f

specific hardware or software capabilities other than the ability to temporarily stop or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

synchronize individual processors. The parallel form o f this algorithm is optimal in the

sense that its total cost is 0(N) as is the sequential version o f the BSA.

1.8.1 Resource Requirements

For the CREW parallel machine implementation being presented here, the

resource requirements deal with processor capabilities and memory architecture.

Obviously, the availability o f at least two processors is required. With regards to the

memory architecture, it is required that both local (to each processor) and shared memory

resources be available. Details o f these resource requirements are given below.

1.8.2 Processor Requirements

For the purpose of this discussion, each processor must:

1) be synchronizable.

2) be independent of all other processors.

3) have a unique id number and be able to identify itself using this id number.

4) have access to a common block o f memory (shared memory).

5) have access to a private block o f memory (local memory).

As presented, this version o f the algorithm assumes that the five requirements

mentioned above are available as stated. They greatly simplify various aspects o f the

pBSA, especially memory access conflict resolution during steps 3 and 5 of the algorithm

(sections 1.8.9 and 1.8.11, respectively). However, the pBSA can be easily modified to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

deal with machines and situations that do not meet some or all o f these requirements.

Such modifications will be discussed in Section 1.9.

The first three requirements listed above apply to processor capabilities needed by

the parallel version of the BSA. At various steps in this algorithm, each processor will be

required to copy data to or from the shared memory resource. To accomplish this it will

be necessary to start or stop all o f the processors at essentially the same time at various

points during execution. This synchronizing operation ensures that no processor will race

ahead o f any other and potentially invalidate the results of the algorithm.

The last two requirements listed above are discussed below in detail with regards

to overall algorithm behavior and requirements. All processors must have access to a

section o f memory that either is, or can be, dedicated exclusively to a single processor.

This is needed so that the selection problem can be divided among the available

processors without incurring unsolvable or time-wasting memory conflicts. Similarly,

the processors must also have access to a common block of memory. This is needed so

that the processors can share the results o f their work without requiring a complex

message passing scheme to accomplish this task.

As with the processors, certain assumptions have been made about the availability

and amounts o f certain forms of memory. In particular, the parallel version o f the BSA,

as presented here, requires shared and local memory resources. Each memory resource

has a specific place in the operation o f the algorithm and a specific required minimum

amount for proper algorithm operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

1.8.3 Shared Memory Requirements

The shared, or common, memory resource constitutes the main repository for the

data set and the intermediate results information created during the solution process. It is

assumed that enough sharable memory is available to hold the entire list S while

processing occurs and a number o f accumulators equal to the number o f bins used to

solve the problem. Therefore, the maximum amount o f shared memory needed is

(js| = bins), where bins is the number o f bins required by the algorithm to solve the given

problem, one accumulator per bin.

A reasonable estimate o f the minimum amount o f shared memory needed is

enough memory for one accumulator for each bin required by the algorithm to solve the

given problem. The actual minimum amount of shared memory needed will depend

entirely upon any modifications made to the algorithm's implementation by the

implementer. Some o f these potential modifications will be mentioned in Section 1.9.

1.8.4 Local Memory Requirements

The local, or private, memory resource will be used to store the disjoint subset of

S that is assigned to each processor and the local and global solution data generated by

the pBSA as it executes. This is accomplished by using enough local memory to store a

complete set o f bins and a number o f accumulators equal to twice the number o f bins

used by the pBSA to solve the given problem. Rather than store the members o f the

disjoint subset of S in the local memory resource and then place them in the appropriate

bin, local memory usage is reduced by storing the elements at the time they are placed in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[
24

a bin so that only one copy o f the subset is kept in local memory. Thus, the maximum

amount of local memory required is [js|/p"]-F (2 x bins).

As with the shared memory resource mentioned earlier, a reasonable estimate o f

the minimum amount o f local memory needed is enough local memory for two sets

accumulators (2 x bins) . The actual minimum amount o f shared memory needed will

depend entirely upon any modifications made to the algorithm's implementation by the

implementer. Some o f these potential modifications will be mentioned in Section 1.9.

1.8.5 Algorithm Description

The parallel version o f the Bin Selection Algorithm (pBSA) is an eight step

solution to the general selection problem. This version differs from the sequential

version previously discussed by adding steps to solve algorithmic difficulties unique to

parallel computing, especially processor synchronization requirements and data

communication. These steps can be summarized as follows:

Step 0 - Initial Assumptions

Step 1 - Initialization

Step 2 - Element Distribution

Step 3 - Determine Total Bin Counts

Step 4 - Locate the K* Element Bin

Step 5 - Copy Selected Bin Contents to S

Step 6 - Process/Terminate Logic

Step 7 - Result(s) Processing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

Each step is described in detail below. Throughout this discussion a running

example will be used to illustrate the operations performed during each step o f the

algorithm.

1.8.6 Step 0 - General Assumptions and Knowledge

As for the sequential version o f the BSA, for the purpose o f easing the complexity

o f this discussion, it is assumed that certain conditions exist. The pBSA starts with the

same assumptions that were presented during the discussion o f the sequential version o f

the BSA and for the same reasons presented therein. For the discussion of the pBSA, the

following assumptions are added to those described earlier:

• All o f the processor and memory requirements described in Section 1.8.1 have

been met.

• The number o f processors used must be less than or equal to the total number

o f bins.

The assumption dealing with the number o f processors and bins used to solve the

given problem is necessary. Meeting it allows for the use o f a very simple element write

back scheme later in this algorithm. Without it, it may not be possible to guarantee that

all processors can access shared memory without conflict. This assumption is discussed

in greater detail in Section 1.8.9.

The parallel systems implementation assumptions are required in general. In

order for the algorithm to function properly on a parallel architecture machine, the

capability to synchronize or to start and stop individual processors is essential in

maintaining orderly processing. Otherwise it is possible that a processor with fewer list

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

elements to process or operates faster than its siblings will proceed to the next step o f the

algorithm before the current processing step is completed by all processors.

Should it not be possible to meet the synchronization requirement, it will be

necessary to guarantee that each processor is operating on the same number o f elements

and that each processor takes the same amount of time to process the same number o f

elements. This situation will be discussed further in Section 1.9.

1.8.7 Step 1 - Initialization

During this stage o f the pBSA, the overall structure of the solution to the given

problem is generated. O f critical importance to the efficient operation of the algorithm is

the determination o f the number o f processors to use and the total number o f bins needed.

From these two items the rest o f the required initial data can be generated, namely, the

bin content ranges and the element placement value. These items are discussed in greater

detail below and illustrated with the example in Figure 1.3.

1.8.7.1 Determining Processor and Bin Requirements

The number o f processors that should be used is related solely to the number o f

elements in the list, S. Using a number o f processors equal to the base 2 logarithm o f the

size of S has yielded good results. The pBSA does not have any form of fixed

requirement as to the number o f processors it requires for valid processing. It will work

equally well with one processor or with as many processors as are available. However,

the number o f processors used cannot be larger than the size o f 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

Let N = |"log2 \S\\ = flog225] = 5 processors needed, pids = 0 to 4.

Let X = |S|/AT = 5 elements from S per processor.

Let Smax =100 and S mia =1.

Let b = flog2 ■S'max] = flog2 100] = 7 bins required.

Let 6r = fSmI/ i l = 15.

Thus, the bin ranges are: bin 0 0 - 1 4
bin 1 1 5 -2 9
bin 2 3 0 - 4 4
bin 3 4 5 - 5 9
bin 4 6 0 - 7 4
bin 5 7 5 - 8 9
bin 6 90 - 105

Figure 1.3 Initial determination o f the number o f processors and bins and the bin
ranges for the example illustrating the use of the parallel version of the Bin Selection
Algorithm.

The number o f bins required by the parallel version o f the BSA is the same as for

the sequential version. The only difference is in the type o f memory being used. In this

instance, the memory being referenced is the local memory of each processor. See

section 1.5.4 for further details.

1.8.7.2 Element Placement Method and Bin Range Determination

This is accomplished for the parallel version o f the BSA using the same methods

as the sequential version. See section 1.5.4 for further details.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.8.7.3 Indirect Initialization

Likewise, this is accomplished for the parallel version o f the BSA using the same

methods as the sequential version. See section 1.5.4 for further details.

1.8.8 Step 2 - Element Distribution

Using the information generated in Step 1, the elements in S are divided among

the processors, with each processor retrieving the elements assigned to i t Figure 1.3

shows the number o f elements, X , each processor is to retrieve. Table 1.4 shows the

location in S where each processor is to start copying its elements. Note that no

processor will ever attempt to access the same memory location during this process.

As each element is copied from shared memory it is placed into the appropriate

bin in local memory and the corresponding accumulator incremented. Since it is possible

that not all processors will have the same number o f elements o f S to operate upon, no

processor can be allowed to proceed until every processor has finished placing the

elements o f 5 assigned to them in their bins. Therefore, a pause for processor

synchronization is needed before the next step in the pBSA can be executed.

Table 1.4 Positions in 5 where each processor is to start copying the elements o f S to
local memory.

Processor # Q value

0 pid * X = 0 * 5 = 0
1 5
2 10
3 15
4 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

Table 1.5 Bin contents, by processor, after the first pass through S has been
completed.

Processor
0 1

Con

2

tents o f Bi

3

n #

4 5 6

0 3 15, 17 49 79

1 26 31 51 62 95

2 7 37, 33 75 99

3 1,11 43 57 82

4 14 22 55 87 91

As each element is copied from shared memory it is placed into the appropriate

bin in local memory and the corresponding accumulator incremented. Since it is possible

that not all processors will have the same number o f elements o f S to operate upon, no

processor can be allowed to proceed until every processor has finished placing the

elements o f S assigned to them in their bins. Therefore, a pause for processor

synchronization is needed before the next step in the pBSA can be executed.

Table 1.5 shows the resulting bin placement o f the elements o f S by each

processor. Table 1.6 shows the status o f the processor and shared memory accumulators

before the processors write their bin count (accumulator) values to their shared memory

counterpart.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

Table 1.6 Local memory bin element counts and shared memory accumulator values
after the first pass element distribution has been completed.

Bin 0 1

p

2

rocessor #

3 4 5 6

be f be f be f be f be f be f be f

0 1 0 2 0 0 0 1 0 0 0 1 0 0 0

1 0 0 1 0 1 0 1 0 1 0 0 0 1 0

2 1 0 0 0 2 0 0 0 0 0 1 0 1 0

3 2 0 0 0 1 0 1 0 0 0 1 0 0 0

4 1 0 1 0 0 0 1 0 0 0 1 0 1 0

where: be - the number o f elements in the bin (local memory).
f - accumulator value before be is added (saved to local memory).

1.8.9 Step 3 - Determine Total Bin Counts

At this point all o f the elements in S have been placed into the appropriate bin in

the local memory of a processor and the total number o f elements placed in each bin

determined. Also, at the end o f the previous step each processor was temporarily halted

so that every processor can begin the execution o f this step at the same time. This

synchroni2ation pause is required so that the processors can add their bin accumulator

values to their shared memory counterparts without memory conflicts and to guarantee

that every processor does, in fact, get the opportunity to do so for every bin accumulator.

The goal of this step in the pBSA is to reassemble the data generated by each

processor from its disjoint subset o f S so that the bin location o f the K1*1 element can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

determined. In addition, the data required for the correct execution o f Step 5 is generated

during this process and must be preserved for later use.

Table 1.7 The order in which the processors write their bin counter values to the
accumulators in shared memory

Time
0 1 2 3

Acc

4

umulat

5

o r#

6 0 1 2 3

0 pO Pi P2 P3 P4

1 pO p l p2 p3 p4

2 pO Pl p2 P3 p4

3 pO Pl p2 p3 p4

4 pO Pl p2 p3 p4

5 pO Pl p2 p3 p4

6 pO Pl p2 p3 p4

Memory conflicts are avoided by using the processor id's to determine where in

the accumulator list each processor should begin. Thus each processor is assigned to a

unique starting position and continues up the accumulator list from that point until it has

added all o f its1 bin counts to the appropriate accumulator. The write order for each

processor is shown for the running example in Table 1.7.

It should be noted again that this step assumes that the number o f processors used

is less than or equal to the number of bins required by the BSA to solve the given

problem. So long as this assumption holds then a simple write-back scheme, such as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

scheme illustrated in Table 1.7, will meet the needs o f this step in the algorithm. The

difficulty in generating a new write-back scheme to meet the requirements o f this step is

such that ensuring that the initial assumption holds is the only efficient and optimal

approach to this problem.

The fifth step o f the pBSA copies the contents o f the bin known to contain the

desired K111 element from each processors' local memory resource to the shared memory

resource. It is necessary that each processor be able to write its data without overwriting

the data placed in shared memory by the other processors. Furthermore, it is essential

that all o f the data written by the various processors to shared memory be written

contiguously. Any gap that is left in shared memory during the write-back process will

allow one or more of the previous elements of S to erroneously appear in the new list S.

Table 1.8 shows the results o f this step as each processor stores the current accumulator

value before adding its local bin count to each accumulator in shared memory

respectively.

Once every processor has finished adding their bin counts to the accumulators in

shared memory, a second pass is made through the accumulator list in the same order.

The final value o f each accumulator is copied into the local memory o f each processor

and stored in the second set o f accumulators contained therein. This data is needed by

each processor in Step 4 so that the location of the K* element can be determined. For

the illustrating example the results o f this last pass are shown in Table 1.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 1.8 Final results of steps 2 and 3 from the first pass through S.

33

Bin 0 1

F

2

’rocessor #

3 4 5 6

be f be f be f be f be f be f be f

0 1 0 2 1 0 3 1 2 0 1 1 3 0 3

1 0 5 1 0 1 2 1 1 1 0 0 3 1 2

2 1 4 0 4 2 0 0 1 0 0 1 2 1 1

3 2 2 0 4 1 3 1 0 0 0 1 1 0 1

4 1 1 1 3 0 3 1 3 0 0 1 0 1 0

where: be - the number o f elements in the bin (local memory).
f - accumulator value before be is added (saved to local memory).

1.8.10 Step 4 - Locate the K* Element Bin

Each processor, working with the final accumulator values that were copied to

local memory during the previous step, now determines which bin contains the desired

K* element. This is accomplished in exactly the same manner as described earlier in

Section 1.5.6 by each processor working on the given problem. Since all o f the

processors copied the same accumulator values from shared memory, each processor will

reach the same result. What has not been determined, however, is which processor

actually has the K& element and its actual value.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

Table 1.9 Final accumulator values for the first pass through 51

Bin 0 1 2 3 4 5 6

Total 5 4 4 4 1 4 3

Table 1.10 Range o f eliminated elements on first pass by AT value.

K
Value Location

Elements

Remaining Eliminated

i < a: < 5 BinO 5 20 (80%)

6 <AT<9 Bin 1 4 21 (84%)

10 < ^ < 1 3 Bin 2 4 21 (84%)

14 < AT <17 Bin 3 4 21 (84%)

00II Bin 4 1 24 (96%)

\9 < K < 2 2 Bin 5 4 21 (84%)

23 < AT < 25 Bin 6 3 22 (88%)

1.8.11 Step 5 - Copy Selected Bin Contents to 5

With the completion o f Step 4 o f the pBSA, the bin containing the K* element

has been identified. In addition, those members o f 5 that are o f no further use in the

search for the K* element have been identified and can be discarded. In this step, the

members o f the targeted bin are preserved and the remaining members of 5 are discarded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

by simply having each processor write the contents o f the target bin back to shared

memory overwriting the previous contents o f S stored there.

Only those processors that have non-empty target bins perform the write back

operation. Processors that have empty target bins make no attempt to write to the shared

memory area and temporarily halt until all of the other processors have completed their

write back operations. Since it cannot be predicted in advance how long this step will

take, another processor synchronization step is required at this time.

Each processor copies the contents o f the target bin back to the space occupied by

S in shared memory independently o f any other processor. Memory write conflicts are

avoided because each processor starts writing the contents o f its target bin at a unique

position in the shared memory area that originally contained S. These unique starting

positions were determined during Step 3 (see Section 1.8.9) and stored in the second set

o f accumulators kept in local memory for this purpose.

Two additional operations must be performed before moving to the next step of

the pBSA. After the copy operation is complete, the size o f S must be reset to equal the

accumulator value o f the targeted bin (i.e. the number o f elements o f S' that the targeted

bin contained). Also, since elements o f S both larger and smaller than K may have been

discarded, the value o f K may itself have to be adjusted.

The adjustment to K is relatively simple. If the search is for the largest

element in S, then the sum o f the number o f elements o f S in the bins above, but not

including, the target bin must be subtracted from K. For the K* smallest element in S, the

sum of the number o f elements o f S in the bins below, but not including, the target bin

must be subtracted from K.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

Referring the illustrating example, if K = 5 smallest is the desired element, then

from Table 1.9 it can be seen that this element must be located in bin 0. This is true

because bin 0 holds the smallest elements o f S and it currently contains five (5) elements.

Thus, the contents o f each processor's bin 0 must be copied back to shared memory.

Using the appropriate value o ff, shown in Table 1.8, as the starting index into the

shared memory space occupied by S, each processor copies the elements in the selected

bin starting at that location. The size o f S is set to the number o f elements in bin 0. Since

there are no bins below bin 0, no adjustment to the value o f K is required. The final

result o f this step is illustrated in Figure 1.4.

Processor # Starting at Position Copies to Shared
Memory

0 0 3
1 5
2 4 7
3 2 1,11
4 1 14

S = (3, 14,1,11,7) and |S| = 5

Figure 1.4 Copy the selected bin contents (bin 0) to shared memory.

1.8.12 Step 6 - Process / Terminate Logic

With the completion o f Step 5, all o f the processors can begin executing the

process/terminate logic of the pBSA. At this point only one o f two situations can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

possibly exist. First, we can have |5| = 1 with the desired K1*1 element the only remaining

member o f S. I f so, then just Step 7, result(s) processing, remains to be performed.

Otherwise, more than one element remains in S including the K* element. Should

the number o f elements remaining in S be small, less than 10 or so, the remaining

elements can be sorted and the desired K* element determined trivially. The point at

which the remaining elements should be sorted is left for the implementer to decide. The

pBSA will yield correct results without regard to the number o f elements in S as will a

simple sort and pick operation.

If the decision is made to run the remaining elements o f S’ through the pBSA once

more then several adjustments must be made before Steps 2 through 6 can be repeated.

Essentially, the initialization and setup information determined in Step 1 needs to be

recalculated. These calculations will reflect the altered problem that now exists.

Typically, the number o f bins and processors needed will be greatly reduced since a

significant percentage o f the original elements of S will have been eliminated. The range

o f values o f the remaining elements o f S is much smaller than the original range.

1.8.13 Step 7 - Result(s) Processing

The processing done in this step is trivial if only one K* element is to be found by

the BSA. Only the value o f the K* element and any statistical information gathered by

the implementer needs to be output. However, with minor modification, this algorithm is

capable o f returning multiple K* largest or smallest element values and providing

additional information about the members of the list, S. Further discussion o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

modifications to the BSA required to implement this capability, as well as other

algorithm modifications, are described in Section 1.9.

1.9 Modifications, Other Uses, and Future Work

The adaptability o f the BSA can be demonstrated by noting the ease with which it

can be used by both sequential and parallel computing machines. This occurs because

this selection method requires at least one processor and a minimum of two bins to

function (trivial case). The use o f additional processors, if available, decreases the time

needed to determine the solution. The use o f additional bins, should sufficient memory

be available, allows for more elements to be discarded after each iteration thereby

increasing the efficiency o f the algorithm. Neither modification is required or needed,

however, for the algorithm to function properly, effectively, or efficiently.

1.9.1 Non-Uniform Data and Bin Subrange Distributions

As originally designed and presented here, the Bin Selection Algorithm does not

handle non-uniform data distributions well. As mentioned earlier, the worst case

behavior for this algorithm is 0 (N 2), occurring when only one element is eliminated

during each pass through the BSA. When a non-uniform element distribution is detected,

either before or during processing, the manner in which the bin subranges are assigned

and the element placement method must be altered to reflect the expected distribution

pattern as closely as is possible under the circumstances encountered.

One of the advantages o f this algorithm over the classical solution is the

simplicity and ease with which the data elements are placed in their respective bins. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

placement method used here, integer division, allows for a constant 0(1) element

placement cost. It is, obviously, veiy desirable to maintain this situation i f at all possible.

The following scheme suggests that it may indeed be possible to do so.

This alternative element placement scheme involves the use o f a lookup table and,

possibly, a hashing function. The lookup table would actually assign the element a bin

location and would be accessed (indexed) in one o f three ways. The first indexing

method would be the simplest, direct indexing. Here, the table would have as many

entries as the data range has values. For example, i f the valid data range is from 0 to 100

then the table would have 100 entries. It is clearly obvious that in the case o f a large

range o f possible values such a table would become unwieldy and, potentially, too large

to store in memory (required i f we are to maintain the 0(1) cost factor).

The second indexing method would involve the use o f a hashing function to index

the lookup table and determine the bin into which the element should be stored. Such a

function would also maintain the desirable 0(1) cost factor for element placement.

However, it is not possible to guarantee that a hashing function can be found for every

data type and distribution situation that could be encountered when using the BSA.

The third indexing method involves the use o f subranges and direct element value

comparisons to assign elements to a particular bin. In this case, the element values are

compared to a cutoff value. I f they are less than or equal to the cutoff value then they are

assigned to the corresponding storage bin. Otherwise, the element value must be

compared to the next subrange cutoff value in the table. This process continues until the

element is placed into a bin.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

It is obvious that, as stated, this final indexing method is not 0(1) in cost but

dependent upon the actual number o f comparisons needed to place each element into a

bin. Other methods o f organizing the table for such a lookup exist but they all depend

upon some level o f knowledge o f the actual element distribution pattern, knowledge

which may not be available or easily obtained. The best overall solution to this problem,

and one which reduces the overall cost o f element placement in this case as much as

possible, is to use a binary search to access the table. This would serve to keep the

number o f comparisons needed to place any element in the data set as close to a single

constant factor as possible and yet retain the overall simplicity that the BSA, as a whole,

exhibits.

1.9.2 Memory and Data Set Size Problems

It is entirely possible that the size o f the data set being manipulated is too large to

be kept entirely in memory or is large enough to disallow the possibility of keeping two

copies o f the set in memory as the original design o f the Bin Selection Algorithm

requires. In both cases, the algorithm can be easily adjusted to deal with both

circumstances through the use o f one or more files stored on a hard disk. It is assumed

that enough memory exists to keep all o f the necessary accumulators in memory and any

bookkeeping information that the implementer may need when using disk files to handle

the data set and bin element storage requirements.

The first situation mentioned above is a worst case situation when dealing with

large data sets. In this case, the algorithm will have to be modified so that all reading and

storage o f elements will take place using disk files. In this event, some sort o f lookup

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

table will be needed so that the correct disk file will be accessed during processing.

Refer to the earlier discussion on non-uniform element distributions in Section 1.9.1 for

further information on the creation and use o f such tables. While the use o f disk files for

data set and bin element storage will greatly slow the overall speed o f execution o f this

algorithm, a properly constructed method for handling the files and the placement o f

elements therein should not appreciably affect the overall cost o f the algorithm.

The second situation mentioned above, where the size o f the data set is such that

two copies o f the set will not fit in memory is the easier to the two situations to handle.

Here, we do have enough memory to store one copy of the data set and the required

accumulators. Therefore, the data set itself is kept on disk and is read from there while

memory holds a copy o f each element in the set based upon bin location. When the bin

holding the element is determined, the bin contents can be copied to a new data file

on disk, or, if the implementer chooses, can be kept in memory if the number of elements

has been sufficiently reduced so that it is now possible to maintain two copies of the

reduced data set in memory.

1.9.3 Parallel System Implementation Problems

The number o f different parallel system designs is such that no single parallel

algorithm description is sufficient to deal with all o f the differences between the various

designs. The CREW PRAM design presented here is a general design intended to convey

the overall functionality and simplicity o f the Bin Selection Algorithm and the ease with

which it can be modified for use on different computing machinery. Whether or not the

BSA can be implemented on any particular machine as it is described in this work is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

directly dependent upon the requirements o f the algorithm as stated in its description

presented earlier.

Regardless o f the type o f parallel machine being used, one factor must be

maintained if the algorithm is to function as described. It must be guaranteed that no

single processor can race ahead o f any other processor during the execution o f certain

critical steps o f the algorithm, such as when data is being written to the accumulators

during step 3, Section 1.8.9. How this guarantee can be kept is up to the implementer

since only this person can judge what works best for their particular machine.

This is accomplished in the BSA through the ability to stop any or all processors

temporarily, to restart processors, and through the use of the read/write synchronization

method illustrated in table 1.7. If the scheme presented will not work for the destination

machine then the current methods for synchronizing the reading and writing o f elements

and data in memory must be modified such that all processors can perform all required

operations without memory collisions, lockouts, or any other form o f interference.

Otherwise, it cannot be guaranteed that the algorithm will yield correct results or even be

able to operate a t all.

1.9.4 Other Uses

A major improvement afforded by this algorithm over the classic algorithm is that

the Bin Selection Algorithm can be used to find more than one K* element from a list S

without having to search the entire list each time. By saving the bin contents and the

accumulator values to permanent storage after the first element distribution pass through

S, other elements can be determined without repeating the expensive first pass. If

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

sufficient memory exists, the bin contents and accumulator values can be copied to

another section o f memory for later use.

In either event, the results o f the first element distribution pass through S can be

recalled and reused without incurring first pass costs. Step 3 o f the BSA must be

modified to perform the desired save operation since this is when the total bin counts are

determined.

This algorithm can also be modified to yield more information about the elements

in the list than just the single K01 element desired. The actual minimum and maximum

values for each subrange as well as the entire list can be determined during execution.

Element distribution information can be acquired as well as a count o f the elements

within specified subranges or those meeting other specified conditions.

1.9.5 Future Work

Further work is needed with regard to the method used to determine the optimal

number of bins to be used. The integer division method works well and is simple to

implement. However, no account is taken o f element value distributions and the number

o f processors and memory available when the number of bins required is computed. It is

believed that a method o f calculating an optimal number o f buckets required is possible

and that such a calculation need not be complex or time-consuming.

1.10 Conclusion

As has been shown above, the Bin Selection Algorithm is a fairly well-behaved

linear solution to the Selection problem. It is also a highly and easily modifiable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

algorithm. Its very simplicity makes it a very easy to understand and implement on a

wide variety o f computer systems in any programming language. Designed for normal

element distributions, with minor alterations this algorithm can be made to handle

skewed element distributions efficiently. Even the worst case scenario for this algorithm,

a sparse list with a large range, can be handled by relatively simple modifications to the

basic algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2

STEINER TREES

The general Steiner Tree problem in graphs is the problem o f finding a tree

connecting a given set o f nodes, S, in a connected undirected distance graph

G = (V ,E ,d), where V is the set o f vertices, S c V is the set o f Steiner vertices, and E is

the set o f edges in the graph. The minimum Steiner tree for G and S is a tree which spans

S with a minimum total distance on its edges. For a graph G = (V ,E ,d), where d = 1 for

all edges, the minimum Steiner tree for G and S' is a tree which spans S that includes the

minimum number o f vertices not in S.

This problem has long played a prominent role in many physical design tasks. It

has a wide variety of practical applications such as communication networks, layout

design of printed circuit boards and integrated circuits. It also has application in the

mechanical and electrical systems in buildings, distribution and transportation networks,

the wire routing in physical VLSI design and in phylogeny (evolutionary trees.)

2.1 Previous Work

It has been shown that finding a minimum Steiner tree for any given G and S is

NP-Complete [8]. In fact even when distance functions are restricted to a particular class,

the problem is still NP-Complete [8]. This means that it is unlikely that an efficient

algorithm can be found to compute the minimum Steiner tree for any given G and S.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

Due to its importance, there has been a great deal o f work on approximation

algorithms for the Steiner tree problem [4, 9, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23].

Takahashi and Matsuyama [19] present an 0(|S|(V2|) approximation algorithm for finding

a Steiner tree in a given G and S. Moreover, it has been shown that

D(TS)JD{ropt) < 2(l - l/|S|) where D(TS) denotes the total distance on the edges o f the

Steiner tree generated by their algorithm and D(Topt) denotes the total distance on the

edges o f the optimal Steiner tree [19].

Kou and Makki [9] later developed an 0 (j £ | + |K - 1S jlo g |F -5 | + «log/?(«,|5|))

approximation algorithm where « = min(j£,|, |5 |(j5 |-l)/2) and

= min{r, log' < «/|S|} . The ratio o f the total distance on all the edges of a Steiner

tree generated by the algorithm to that o f the optimal tree is not greater than 2(1 - 1/Z)

where L represents the number of leaves in the optimal tree. Their bound has been

further improved by Makki [11] to o(jZs[+ \V\log[F|).

Waxman and Imase [20] have shown that Rayward-Smith’s approximation

algorithm [16] is also bounded by 2(1 — 1/Z) [20]. The bound 2(1 — 1/Z,) has been known

to researchers in the field for a decade as the best worst case ratio. Recently Zelikovsky

[23] has shown that this worst-case bound can be improved and his result has been

further refined by Berman and Ramaiyer [4],

2.2 A New Steiner Tree Algorithm

This work considers a special case of the Steiner tree problem in graphs. For this

problem it is assumed that the underlying graph G does not have any direct edge between

the vertices in S c V and that all edges in E are o f unit length. The problem is to find a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

tree in G which spans the vertices in S and uses a minimum number o f vertices in V - S .

Makki and Pissinou [14] were the first to formulate this problem and present an efficient

approximation algorithm for it. Here, we present and analyze a new approximation

algorithm for this problem.

2.3 General Description

This algorithm differs from the other solutions proposed for the Steiner Tree

problem in that it does not follow normal computer science algorithm design practices.

Rather than use prior art or an elegant application o f various common algorithms and

techniques, this algorithm uses a basic engineering brute force approach. This is a result

o f the basic philosophy used during the design o f this algorithm that can be best

described as the 'what do I know now and how do I take advantage o f this fact'

philosophy. This question and the eventual answer guided and controlled the entire

design process. Additionally, as each step in the solution process was determined and

verified, every effort was made to keep the impact and implementation of the new

solution step as simple as possible to avoid unnecessary complications to previous steps

in the algorithm.

What finally emerged from this process is the relatively simple bookkeeping

algorithm presented below. It makes use o f five data structures to organize all of the

original graph data and to track the solution process as the Steiner Tree is generated. As

the status o f the various nodes and edges o f the graph G change, these data structures are

modified accordingly. This process is the heart of the algorithm since the change in value

o f the various nodes and edges in G as the solution tree construction progresses

determines the next step in the tree construction process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

In general, this algorithm operates by creating a series o f subtrees that contain all

of the Steiner vertices, S, and then connecting these subtrees until a single tree contains

all o f the Steiner vertices. First, all o f the vertices in the Af — S subset that have edges

leading to more than one Steiner vertex are selected. For each such vertex, a subtree

consisting o f this vertex, the Steiner vertices it is connected to by a single edge, and those

edges is generated. If all o f the Steiner vertices have been placed in subtrees during this

step then a check is made to see if a solution has been obtained. If a single subtree

contains all o f the Steiner vertices then a solution has been found and the algorithm ends.

Should the first step not result in a solution then one o f two possibilities exists.

Either all o f the Steiner vertices have not been placed into subtrees or there exists two or

more disjoint subtrees holding all o f the Steiner vertices. Should the first situation arise

and not all o f the Steiner vertices be members o f the existing subtrees then each

remaining Steiner vertex is placed in a subtree of its own along with one non-Steiner

vertex and their connecting edge. All o f the vertices selected during these two steps are

considered selected and are so marked in the various data structures.

Now that all o f the Steiner vertices are known to be in two or more disjoint

subtrees it is necessary to connect these subtrees thereby generating the desired solution

tree. It is possible that the addition o f one or more edges will complete the connection

process so the data structures are examined to locate such edges. Any such edge located

is added to the subtree list as a subtree consisting of the two nodes and the desired new

edge. All o f the subtrees thus joined together by the addition o f the new edge are marked

with the status value connected. All vertices and edges so marked are considered to part

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

o f the final solution tree. Should all o f the Steiner vertices have the status connected at

the end o f this step then the solution tree has been generated and the algorithm halts.

If the addition o f single edges, if possible, does not generate the solution tree then

the disjoint subtrees are more than a single edge distant from each other. To join these

subtrees it will be necessary to generate new subtrees from the list o f available non-

Steiner vertices until all o f the currently disjoint subtrees can be connected together.

Each new subtree will be composed o f one new non-Steiner vertex and two edges, one of

which leads to a Steiner or non-Steiner vertex that has been marked as selected or

connected. This process continues until all o f the Steiner vertices have been marked

connected, thus indicating that the solution tree has been generated.

The key to this entire process is the record keeping required by the changing

status and value o f the various vertices in the original graph G. A vertex becomes more

valuable and important to the eventual solution as the number o f its edges leading to

Steiner, selected, or connected vertices increases. Such vertices will be used before any

other vertex is chosen for inclusion in the solution tree. When no such important vertices

can be identified then a simple selection criterion is used to choose a vertex to add to the

subtree list (and the eventual solution tree).

2.4 Basic Definitions

Given a connected undirected graph G = (V ,E ,l) where

■ Visa, set of vertices

■ E is a set of pairs of vertices called edges that connect the vertices

■ all edges are o f unit length

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50

We define

1. 5 c F be the set o f Steiner vertices (nodes)

2. NS = V — S be the set o f non-Steiner vertices

3. R to be the solution tree output by this algorithm

4. Pi to be the i* subtree, not yet a part o f R

In addition to being partitioned into one of the two above subsets o f G, each

vertex has two distinct attributes associated with it. These attributes are the select status

and the connect status o f the vertex. The select status is used to indicate if the vertex has

been chosen as part o f a subtree Pi in the subtree list. A 'selected vertex is informally

considered to be a part o f the solution tree R.

The connect status is used to indicate if the vertex has been formally included in

the solution tree R. Connect status is also used to indicate which vertices and, therefore,

which subtrees Pi have not yet been joined to the tree R. The algorithm stops when all o f

the Steiner vertices have been 'connected. A vertex cannot be 'connected to the tree R if

it has not been 'selected by the algorithm. Thus the valid status values for any vertex are

unselected/imconnected, selected/unconnected, and selected/connected.

2.5 An Example Problem

In order to demonstrate the operation o f this algorithm, a sample graph G is

provided for illustrative purposes. The example graph is shown in Figure 2.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

Figure 2.1 Example graph G with Steiner Nodes (donuts) used to illustrate the
operation o f this algorithm.

2.6 The Required Data Structures

Five data structures are used to organize and track the status o f the Steiner and

non-Steiner vertices in G as the solution tree R is generated.

2.6.1 The Steiner Node List (SNL)

This list contains vertex connection data from G pertaining to the vertices in 5.

This information is represented as a one-dimensional array the size o f [S|. Each location

in the array represents a single vertex in S ., Si, and has space reserved for a pointer to an

ordered linked-list o f vertices in S and NS, respectively. This list consists o f those

vertices that have an edge in common with Si and, in the future, is referred to as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

'edge-list.' Each edge-list is ordered by vertex number. This array, representing the

vertex set S, is the Steiner Node List, SNL.

Table 2.1 The Steiner Node List (SNL) after initialization.

Si Edge List

1 8 □
2 8 9 □
3 7 □
4 5 □

2.6.2 The Non-Steiner Node List (NSNL)

This list contains vertex connection data from G pertaining to the vertices in NS.

This information is represented as a one-dimensional array the size of |-MS|. Each

location in the array represents a single vertex in NS, NS;, and has space reserved for a

pointer to an ordered linked-list o f vertices in S and NS, respectively. This list consists of

those vertices that have an edge in common with NSi and, in the future, is referred to as

the 'edge list.1 Each edge list is ordered by vertex number. This array, representing the

vertex set N S is the Non-Steiner Node List, NSNL.

Each location in the NSNL array also has space reserved for several vertex status

values used by the algorithm to select or reject vertices for incorporation into the solution

tree R. For each vertex in the NSNL four status values are kept. They are the number of

Steiner nodes sharing an edge with the vertex, the total number o f vertices sharing an

edge with the vertex, the number o f vertices that have 'selected status, and the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

vertices that have 'connected status. Space is also reserved for each vertex in the NSNL

for a pointer to the vertex's location in the pick list.

Table 2.2 The Non-Steiner Node List (NSNL) after initialization.

#s # v #sel #con NSi Edge List

1 3 0 0 5 4 6 7 □
0 2 0 0 6 5 9 □
1 3 0 0 7 3 5 9 □
2 2 0 0 8 1 2 □
1 3 0 0 9 2 6 7 □

2.6.3 The Pick List (PL)

The pick list, PL, is an ordered linked-list containing index values into the NSNL.

Membership in the pick list changes twice during the algorithm's operation. Initially, the

pick list contains indices to those NSNL vertices that have edges leading to multiple

Steiner vertices. Later, the pick list contains those vertices in the NSNL that have the most

edges leading to vertices in the subtrees Pi in the SL. Members o f PL are ordered by

vertex number.

Table 2.3 The first Pick List (PL) after initialization.

PL 8 □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

2.6.4 The Subtree List (SL)

A data structure similar to the SNL is used to store the subtrees, Pi, generated by

the algorithm that may eventually be part o f the solution tree R. Each location in the

array contains a pointer to a single subtree P„ This array is the subtree list, SL.

Table 2.4 The Subtree List (SL) after initialization.

Pk Vertex (edge) List

0 □
1 □

2.6.5 The Select/Connect Table (SCT)

A simple data table is used to track the solution status as the algorithm proceeds.

For each vertex in G the following information is stored in the data table: the connection

and selection status o f the vertex, the number o f subtrees in the subtree list, SL, that

contain the vertex, and a linked list o f SL array indices indicating the subtrees Pj in which

the vertex has membership. This data table will be referred to as the Select/Connect

Table, SCT.

Table 2.5 The Select/Connect Table (SC I) after initialization.

vertex # 1 2 3 4 5 6 7 8 9

selected

connected

o f subtrees 0 0 0 0 0 0 0 0 0

subtree list

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

2.7 The Algorithm

This approximation algorithm uses a simple bookkeeping method for determining

the shortest tree that connects all o f the Steiner vertices S in a given graph G. It consists

o f the following eight steps:

1. Graph Preprocessing

2. Initialization

3. Steiner Vertex Selection

4. Vertex Connection Evaluation

5. Subtree Traversal

6. Single Edge Connection

7. Non-Steiner Vertex Selection

8. Solution Tree Output

2.7.1 Step 0 - Graph Preprocessing

This step consists primarily o f ordering the vertices in the graph G in a consistent

manner so that the algorithm can operate efficiently. By the nature o f the problem, the

vertices in the graph G have already been separated into the two subsets S and

NS = V — S , representing the Steiner and non-Steiner vertices respectively. Only a

vertex numbering scheme is required.

The method used to number the vertices o f the graph, G, is directly related to the

efficiency o f this algorithm as it is presented here. Besides serving as a way to order the

vertices and provide a convenient manner o f specifying the edges o f G, it drives the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

simple vertex selection methods that will be used at various stages during the execution

o f this algorithm. Therefore, care must be taken when the vertices o f G are labeled.

This algorithm, as presented, favors the lower numbered vertices over those with

higher numbered labels. Should the user have any special knowledge o f the given graph,

G, this can be taken into account as the vertices are labeled. With care, a potential, or

desirable, solution path can be marked by the user by simply labeling those vertices the

user would like to see included in the final tree with lower vertex numbers than the rest of

the vertices in the graph.

Regardless o f the numbering scheme used, the Steiner vertices, S, must be

numbered before the non-Steiner vertices, NS. This is required so that the Steiner vertex

subset can be easily identified and to separate them from the non-Steiner vertex subset.

The vertex numbers finally assigned to these two vertex subsets must be done such that

the two vertex subsets remain disjoint, otherwise this algorithm will not function

properly. The order in which the Steiner vertices are numbered is not important although

imposing some sort o f criteria (clockwise, for example) is useful in organizing the

vertices for later reference.

Unlike the Steiner vertices S ., the order in which the non-Steiner vertices, NS, is

numbered is important and will affect the size of the solution tree R produced by this

algorithm. A regular and consistent numbering scheme is recommended, such as from

the left to the right and from the bottom to the top o f the graph G. Any special

knowledge o f the graph or other special preferred solution criteria is incorporated into the

vertex numbering scheme at this time. A chaotic or random non-Steiner vertex

numbering system should be avoided since it will cause the algorithm to output a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

decidedly non-optimal solution which, in the worst case, can contain o f all o f the vertices

and most o f the edges in G. The numbering scheme chosen for the graph that will be

used to illustrate this algorithm can be observed in Figure 2.1.

The data required to initialize the various data structures is also collected during

this step. The total number o f vertices in the graph G, |V|, and the number o f Steiner

vertices, |Sj, are required for correct algorithm behavior and data structure creation and

initialization. These values and others will be determined during the data entry process

when the graph data is entered into the algorithm during the initialization step.

2.7.2 Step 1 - Initialization

Initialization o f the SNL and the NSNL data structures is accomplished during the

data entry process. Using the vertex numbering scheme imposed during the graph

preprocessing step, each vertex is taken in numerical order. The ordered edge list for

each vertex is also created in numerical order. For example, if vertex 3 has three edges

leading to vertices 1, 5, and 6 respectively, then the edges will be entered in the following

order 3-1, 3-5, and 3-6.

The vertex status information in the NSNL is also initialized during the data entry

process. The values regarding the number of Steiner vertices and total number o f vertices

sharing an edge with the NSNL vertex being initialized are tabulated. The other status

values are initialized to zero. No vertex status information is kept for vertices in the SNL.

After the SNL and NSNL arrays have been initialized, the ordered pick list PL can

be created. Initially, the pick list contains an entry for each non-Steiner vertex W in the

NSNL that has edges leading to two or more Steiner vertices in S. Each vertex W in the

pick list is organized according to the number o f edges from W that lead to Steiner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

vertices and is further ordered by vertex number o f W if necessary. Later in the algorithm

the contents o f the pick list will be replaced to reflect the changed nature o f vertex

selection as the solution tree, R, is generated. The remaining data structures, the SL and

the SCT are initialized to null or zero where appropriate.

The Steiner Node List, NSL, generated by this step is shown in Table 2.1. The

Non-Steiner Node List, NSNL, is shown in Table 2.2. The Pick List, PL, for the first

portion o f the algorithm that was generated during the initialization step is shown in

Table 2.3. The Subtree List, SL, is shown in Table 2.4 and the Select/Connect Table,

SCT, in Table 2.5.

2.7.3 Step 2 - Steiner Vertex Selection

The objective o f this portion o f the algorithm is to place all o f the Steiner vertices

Si into one or more subtrees Pk and record these assignments in the subtree list SL, the

select/connect table SCT, and the non-Steiner node list NSNL. It is very important that

the appropriate data structures be correctly updated when a vertex is assigned to a subtree

Pic. Any eiTors made in updating the various data structures and their components will

cause this algorithm to generate a decidedly poor solution tree R since the vertices and

edges added to it in a later step will be selected using erroneous criteria.

The placement o f the Steiner vertices S is accomplished in two steps, if necessary.

First, using the pick list PL, the non-Steiner vertices NS, that possess multiple edges

leading to Steiner vertices are selected first. For each such NS; selected, a subtree Pk is

generated using NSi as the root and the Steiner vertices as leaves. The subtree Pk is

stored in the SL and the appropriate entries in the NSNL and the SCT are then updated to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

reflect the new solution situation. The selection process continues until the pick list is

empty or until all o f the Steiner vertices have been chosen.

It is possible to choose a vertex NS; from the pick list that has edges leading to

Steiner vertices that have already been included in a subtree Pk in the SL. If at least one

edge leads to a Steiner vertex Sj that is not a member o f an existing subtree then a new

subtree Pk is generated. This subtree will have NSj as the root and all Sj that exist and

only one previously selected Steiner vertex as leaves. Otherwise, such vertices are

rejected since they provide no advantage or new Steiner vertex connections to the

solution process and are therefore redundant.

Second, using the same pick list, any Steiner vertices that have not been placed

into a subtree in the subtree list SL are then added to the SL together with a single non-

Steiner vertex and connecting edge. In this case, the pick list PL has been emptied of

non-Steiner vertices with multiple edges leading to different Steiner vertices before all o f

the Steiner vertices were been placed into a subtree. This is a less desirable situation than

the one described previously since it indicates that at least some of the Steiner vertices in

the graph G are far apart (more that a single edge or one non-Steiner vertex and two

edges distance) from each other.

For each missing Steiner vertex Sj, a new subtree Pk is created by taking from the

PL the first non-Steiner vertex NS* that has an edge leading to an unselected Steiner

vertex Sj. Each entry into the SL will be the subtree Pk, whose root vertex is NS, with one

leaf vertex, Sj. Again, the appropriate entries in the NSNL and the SCT are then updated

to reflect the new solution situation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

The following list describes the substeps, in order, that must be followed to

correctly complete this portion o f the algorithm.

1) I f the pick list PL is empty then proceed to (8).

2) From the PL, remove the first vertex and make it NSj.

3) Using the SCT, check the select status o f every Steiner vertex Sj with an

edge leading to NSi.

a) I f any Sj is not marked selected then proceed to (4).

b) I f all Sj are marked selected then discard NS,- and proceed to (1).

4) Place the vertices NSj and Sj into a new subtree Pk in the subtree list SL as

follows: the root vertex NSi followed by each Sj in numerical vertex order.

a) I f any of the vertices Sj are marked selected in the SCT then only the

first such vertex Sj can be included in Pk. All other Sj that are marked

selected are to be ignored and not included in Pk-

5) In the SCT, for each vertex NSi and Sj in Pk:

a) Increment the subtree membership count.

b) Add k to the list o f subtrees containing the vertex.

c) Mark the vertex as selected i f it is not already so marked.

6) In the NSNL, for NSi,

a) For each Sj added to Pk:

i) Decrement the Steiner vertex count.

ii) Delete Sj from the edge-list.

iii) Decrement the total vertex count.

iv) Increment the total selected count.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

b) In the SNL, for each Sj added to Pk delete NSi from the edge-list o f Sj.

c) Using the SNL, for each NSi in the edge-list o f eveiy Sj in the new Pk,

where NSi *= NSi, increment the total selected count.

d) For each remaining vertex NSi in the edge-list o f NSi, where NSi

\not\in Sj, increment the total selected count.

7) Until all o f the Steiner vertices Sj in the graph G are marked selected in the

SC T proceed to (1).

8) If all o f the Steiner vertices Sj have been marked selected in the SCT then

Step 2 is finished. Proceed to Step 3, Section 2.7.4.

Table 2.6 shows the resulting data tables after completion of the first Steiner

vertex selection step. Table 2.7 shows the resulting data tables after completion o f the

second Steiner vertex selection step. Table 2.8 shows the resulting tables after

completion o f the third and final Steiner vertex selection step.

With the completion o f this step every Steiner vertex Sj is now be a member of

some subtree, Pk, in the forest shown in the SL. This placement is reflected in the

appropriate entries in the Non-Steiner Node List NSNL and the Select/Connect Table

SCT. Next, the forest must be examined to determine if the solution tree R has been

generated and, i f not, then to determine how much o f R was generated during this step

and what must be done to complete the solution tree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 2.6 The data structures after the first Steiner Node Selection step.

Si Edge List

1 □
2 9 □
3 7 □
4 5 □

#S # v #sel #con NSi Edge List

1 3 0 0 5 4 6 7 □
0 2 0 0 6 5 9 □
1 3 0 0 7 3 5 9 □
0 0 2 0 8 □
1 3 1 0 9 2 6 7 □

□PL

Pk Vertex (edge) List

0 8 1 2 □
1 □

vertex # 1 2 3 4 5 6 7 8 9

selected

connected

o f subtrees 1 1 0 0 0 0 0 1 0

subtree list 0 0 - - - - - 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 2.7 The data structures after the second Steiner Node Selection step.

Si Edge List

1 □
2 9 □
3 7 □
4 □

#S # v #sel #con NSi Edge List

0 2 1 0 5 6 7 □
0 2 1 0 6 5 9 □
1 3 1 0 7 3 5 9 □
0 0 2 0 8 □
1 3 1 0 9 2 6 7 □

PL □

Pk Vertex (edge) List

0 8 1 2 □
1 5 4 □

vertex # 1 2 3 4 5 6 7 8 9

selected v '' s
connected

of subtrees 1 1 0 1 1 0 0 1 0

subtree list 0 0 - 1 1 - - 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 2.8 The data structures after the third Steiner Node Selection step.

Si Edge List

1 □
2 9 □
3 □
4 □

#S # v #sel #con NS; Edge List

0 2 2 0 5 6 7 □
0 2 1 0 6 5 9 □
0 2 2 0 7 5 9 □
0 0 2 0 8 □
1 3 2 0 9 2 6 7 □

PL □

Pk Vertex (edge) List

0 8 1 2 □
1 5 4 □
2 7 3 □

vertex # 1 2 3 4 5 6 7 8 9

selected S S S

connected

o f subtrees 1 l l 1 1 0 1 1 0

subtree list 0 0 2 1 1 - 2 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

2.7.4 Step 3 - Steiner Vertex Connection Evaluation

The objective o f this step in the algorithm is to evaluate the forest generated

previously. It must be determined i f the subtrees as they exist in the subtree list SL

constitute the solution tree R or if further work is required to generate R. Four situations

are possible at this point in the algorithm. They are:

1. A single subtree, P0, exists in the SL that contains all o f the vertices in S.

2. Each Steiner vertex Sj is a member of only one subtree Pk in the SL (all of

the subtrees are disjoint).

3. Some o f the Steiner vertices Sj are members o f more than one subtree Pk

in the SL and that none o f the subtrees are disjoint.

4. Some o f the Steiner vertices Sj are members o f more than one subtree Pk

in the SL and that at least one o f the subtrees is disjoint.

The first case, where the SL contains a single subtree Po, is the ideal result. Here,

a single non-Steiner vertex connects all o f the Steiner vertices in the graph G. The

subtree Po is the solution tree R for graph G. We can proceed directly to solution tree

output step in Section 2.7.8.

The second case, where each Steiner vertex in G exists in only one subtree Pk in

the SL and all o f the subtrees are disjoint, is the worst case scenario for this algorithm. At

best, it will require the addition o f one or more single edges to connect the subtrees Pk in

the SL. At worst, it will require the addition o f more subtrees to the SL in order to

connect the forest generated in the previous step.

This situation can be easily detected by examining the Steiner vertex entries in the

SCT for membership in multiple subtrees in the SL. When the subtrees are disjoint, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

total subtree membership count for each Steiner vertex in the SCT will be one (1). The

traversal o f any subtree in the SL will yield no benefit or new information at this time.

However, a starting point is needed for the remaining steps o f this algorithm. Therefore,

traverse the subtree Po in the SL using the method described in Section 2.7.5 and then

proceed to the single edge connection step, Section 2.7.6.

The third and fourth cases involve subtrees in the subtree list SL that have Steiner

vertices in common. The third case, like the first, is an ideal result since the solution tree

R has been generated during the Steiner vertex selection step. However, it is not obvious

that R has been found since multiple non-Steiner vertices have been included in the

subtrees found in the SL.

The fourth case lies between the third and second in desirability. Here, at least

two o f the subtrees in the SL are not disjoint. It is not known which subtrees are disjoint

and their number. However, once the subtrees that share a common vertex are found, and

marked connected in the SCT, a good starting point for further processing will have been

identified.

For the third and fourth cases, the existence of common Steiner vertices in the

subtrees o f the forest can be determined by examining the Steiner vertex data entries in

the SCT. Any Steiner vertex that is a member o f more than one subtree will have a value

greater than one (1) in the total subtree membership count variable in the SCT. In both

cases it will be necessary to traverse the subtrees Pk in the SL to determine their actual

connection status and whether further processing is required to generate R.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

2.7.5 Step 4 - Subtree Traversal

This step in the algorithm travels through the forest in the subtree list SL and, in

essence, determines the connection status o f the subtrees therein. As it proceeds through

the SL, every vertex in each subtree Pk that is encountered is marked connected and the

appropriate data in the NSNL and SCT is updated. Vertices that are marked connected are

known to be part o f the solution tree R and serve as starting points for further processing

if it is determined that not all o f the Steiner vertices are present in R. Once all o f the

Steiner vertices are so marked in the SCT further processing can be halted since the

solution tree R will have been completed.

The traversal process can start with any subtree Pk in the SL and will do so

depending on when this step is executed since this particular step in the algorithm can be

called out of sequence when, and as, needed. Although the subtree that the traversal

starts with is relatively unimportant, it is recommended that when this step is executed for

the first time the starting subtree be the one with the Steiner vertex that appears in the

most subtrees or with the lowest numbered Steiner vertex that appears in multiple

subtrees. This will allow for the connection o f the largest possible number of vertices

early in the solution process and generate the best possible starting point for finishing the

creation o f the solution tree R.

To traverse the subtrees Pk in the SL, do the following:

1) Select a subtree Px in the SL from which to start the traversal if Px has not

been previously specified.

a) Create a temporary traversal list TL and place the subtree Px in the TL.

2) For each vertex W in Px, if W is not marked connected in the SCT:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a) M ark W as connected in the SCT.

b) I f W e SNL then for every vertex NSi in its edge-list, increment the

total connected count variable.

c) I f W e NSNL then for every vertex NSi in its edge-list, increment the

total connected count variable.

d) I f IF is a member o f more than one subtree then add the subtree

numbers z , where , to the temporary traversal list TL.

i) I f z currently exists in the TL or has been an earlier member

o f the list already traversed then do not add z to the TL.

3) While the TL is not empty, select a new Px from the TL and repeat substep 2

above.

4) When the TL is empty examine the connect status o f every Steiner vertex in

the SCT. I f all o f the Steiner vertices are marked connected then the solution

tree R has been generated. In this event, proceed to Step 7, Section 2.7.8, to

complete the algorithm. Otherwise, proceed to Step 5, Section 2.7.6, for

further processing.

By traversing this first subtree and all o f the other subtrees subsequently

encountered, the extent o f the connection between the subtrees in the SL can be

determined. If any o f the subtrees in the SL are disjoint then at least one o f the Steiner

vertices in the SC T will not be marked connected. Should all o f the Steiner vertices in the

SL be marked connected then a solution tree R has been found. Only those vertices in the

SCT that have been marked selected and connected and the subtrees Pk in the SL that

contain these vertices make up the solution tree R.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

If Steiner vertices remain in the SCT that are not marked as connected then at

least one o f the subtrees in the SL is disjoint In this event a partial solution has been

found and marked connected in the SCT. It is from this connected group o f subtrees in

the SL that the solution tree R will be built.

2.7.6 Step 5 - Single Edge Connection

When disjoint subtrees are found in the SL two possibilities exist for connecting

such subtrees. First, the vertices making up the subtrees can be in close proximity to each

other in the graph G. A single edge may be all that is needed to join such subtrees.

Second, the vertices may be far apart in the graph G in which case one or more non-

Steiner vertices and multiple edges will have to be added to join the disjoint subtrees.

In this step we search for those subtrees in the SL that can be joined by the

addition of a single edge. This is accomplished by examining the edge-list o f every non-

Steiner vertex NSi that is marked selected in the SCT. Should a member o f this edge-list

be found that is marked selected in the SCT then a single edge connecting two subtrees

has been located. This single edge is added to the subtree list SL only when both vertices

are not marked connected in the SCT and both vertices are not members o f the same

subtree. The following substeps will accomplish this task.

For every vertex NSi in the SCT that is marked selected and every vertex NSj in

the edge-list o f NSi:

1) I f NSj is marked selected in the SCT then proceed to (2). Otherwise, discard

NSj and repeat this substep with another NSj.

2) I f NSi and NSj are both marked connected in the SCT then discard NSj and

start again at (1) with a new NSj. Otherwise, proceed to (3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

3) Add NS,- and NSj to the SL as a. new subtree Pk with NSi as the root vertex

and NSj as the only leaf.

4) In the SCT, for NSi and NSj:

a) Increment the total subtree count

b) Add k to the subtree list.

5) In the NSNL:

a) For NSi and NSj, decrement the total vertex count.

b) Delete NSi from the edge-list o f NSj.

c) Delete NSj from the edge-list o f NSi.

6) Starting with the new subtree, Pk, use the traversal method detailed in Step 4,

Section 2.7.5, to traverse Pk and all subsequent subtrees thereby marking

their vertices connected in the SCT.

7) If/? has been generated then proceed to Step 7, Section 2.7.8. Otherwise,

continue the single edge connection step until all NSi have been tested.

2.7.7 Step 6 - Non-Steiner Vertex Selection

This is the final vertex selection step of the algorithm. In this step we attempt to

connect the disjoint subtrees in the SL by adding new subtrees to the SL that have at least

one edge leading to an existing subtree whose members are marked connected in the

SCT. This step is totally dependent upon the accuracy o f the status information recorded

during the earlier steps o f the algorithm. Using this data, we will attempt to select those

non-Steiner vertices that have the greatest value in connecting the disjoint subtrees and

also provide the shortest path possible between those subtrees.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

Table 2.9 The data structures after the Single Edge Connection step and a traversal of
the subtrees.

Si Edge List

1 □
2 9 □
3 □
4 □

#S # v #sel #con NSi Edge List

0 1 2 0 5 6 □
0 2 1 1 6 5 9 □
0 1 2 0 7 9 □
0 0 2 0 8 □
1 3 2 1 9 2 6 7 □

Pk Vertex (edge) List

0 8 1 2 □
1 5 4 □
2 7 3 □
3 5 7 □

vertex # 1 2 3 4 5 6 7 8 9

selected S

connected

of subtrees 1 l l 1 2 0 2 1 0

subtree list 0 0 2 1 1,3 - 2,3 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

Before beginning the final selection process, a new pick list o f non-Steiner

vertices from the NSNL must be generated. The pick list PL for this portion o f the

algorithm is created in a slightly different manner than before. The new pick list PL is

generated using the following rules:

1) For every NSi in the NSNL calculate (total selected - total connected) and

store the result in a temporary variable t;.

2) For every NSi in the NSNL, add NSi to the PL if:

a) ti is not zero or negative (if ti is negative then the data recorded in the

NSNL for that vertex is incorrect and the algorithm should be aborted

and the partial solution discarded).

b) NSi is not marked selected in the SCT.

c) The value o f the total connected variable for NSj is greater than zero,

and order each entry into the PL such that:

d) Those NSi with the highest ti values are in the front o f the list.

e) For those NSi that have the same ti value, order them by their vertex

number, lowest to highest.

3) If the pick list PL is empty at this point then generate an entry for the PL by

placing in the PL the lowest numbered NSi whose total connected variable

value is greater than zero and:

a) NSi is not marked selected in the SCT.

b) NSi does not have an edge leading to a Steiner vertex.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

As before, vertices are chosen from the front o f the pick list PL. For each vertex

W selected from the PL a new subtree, Pk, is created in the SL with W as the root vertex.

The new subtree Pk will consist o f at least two vertices, including W, and one edge,

depending upon the type o f subtree that can be generated.

Each subtree Pk generated during this step in the algorithm is one o f two valid

types. The first valid type of subtree directly connects two or more disjoint subtrees Pj in

the SL. Here, each leaf o f Pk is a member o f one o f the subtrees P;. Multiple vertices

from a single subtree Pi are not allowed.

The second valid type o f subtree has only one edge leading to an existing subtree

in the SL. This subtree serves as a 'bridge-builder' to eventually connect two or more o f

the disjoint subtrees in the SL. It is the generation o f this type o f subtree that leads to less

than optimal solutions. Poor selection criteria when generating these subtrees can result

in adding many more non-Steiner vertices to the solution tree R than would otherwise

occur.

The following steps will generate the two valid types o f subtrees mentioned

above.

1) I f the pick list PL is empty then an error has occurred.

2) From the PL, remove the first vertex and make it NS;.

3) Using the edge-list of NS; in the NSNL:

a) Locate the first vertex marked connected in the SCT.

b) Make this vertex Wa and store its subtree numbers) in qo. Note: qo

should be able to hold more than one subtree number since any vertex

can be a member o f more than one subtree in the SL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

4) Place the vertices NSi and Wa into a new subtree Pk in the subtree list SL as

follows: the root vertex NSi and Wa as a leaf.

5) Using the edge-list o f NSi in the NSNL, for every vertex Wj, j ^ a, add Wj

to Pk if:

a) Wj is marked selected but not connected in the SCT AND:

b) Wj is not a member o f any subtree in qo.

6) I f no Wj, j =£ a, was added to the subtree Pk in the previous step then

proceed to (15).

7) In the SCT:

a) For N ^:

i) Increment the subtree membership count.

ii) Add k to the list of subtrees containing the vertex.

iii) Mark the vertex as selected if it is not already so marked.

b) For all Wj, j = a included, added to Pk:

i) Increment the subtree membership count.

ii) Add k to the list of subtrees containing the vertex.

8) For all W), j = a included, added to Pk:

a) If Wj \in SNL then:

i) Delete NS; from the edge-list of Wj.

ii) In the NSNL for NS;:

■ Decrement the Steiner vertex count.

■ Decrement the total vertex count.

■ Delete Wj from the edge-list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

b) I f Wj \in NSNL then:

i) Decrement the total vertex count o f NSi.

ii) Delete Wj from the edge-list o f NSi.

iii) Increment the total selected count of Wj.

iv) Decrement the total vertices count of Wj.

v) Delete NSi from the edge-list o f Wj.

9) For each remaining Wi in the edge-list o f NSi, increment the total selected

count.

10) Traverse the subtree P* using the method described in Step 4, Section 2.7.5.

11) If R has been generated then proceed to Step 7, Section 2.7.8.

12) Perform Step 5 - Single Edge Connection, Section 2.7.6.

13) Regenerate the pick list PL using the method described earlier.

14) Proceed to substep (1).

15) (The new subtree Pk consists o f only two vertices, NSi and Wa, and the edge

that connects them. No traversal is required or needed in this case since two

disjoint subtrees are not being joined.) The second valid subtree type has

been generated.

a) In the NSNL:

i) For Wa:

■ Decrement the total vertex count.

■ Delete NSi from the edge-list.

■ Increment the total selected count.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

ii) For NSii

■ Decrement the total vertices count.

■ Delete Wa from the edge-list.

■ For each remaining Wt in the edge-list, increment the

total selected count and the total connected count.

b) In the SCT:

i) For Wa:

■ Increment the subtree membership count.

■ Add k to the list o f subtrees containing the vertex.

ii) For NSj:

■ Increment the subtree membership count.

■ Add k to the list o f subtrees containing the vertex.

■ Mark the vertex as selected.

■ Mark the vertex as connected.

16) Regenerate the pick listPZ, using the method described earlier.

17) Proceed to substep (1)

The data describing the solution tree R can be found in the SCT and the SL. The

solution tree will be composed o f those vertices in the SCT that are marked connected.

The edges that connect these vertices will be listed in those subtrees in the subtree list SL

that contain the aforementioned vertices. To generate the actual solution tree R, simply

traverse the SCT and the SL and list the tree components as they are encountered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 2.10 The data structures after the Non-Steiner Vertex Selection step and a
traversal o f the subtrees.

Si Edge List

1 □
2 9 □
3 □
4 □

#S # v #sel #con NSi Edge List

0 1 2 0 5 6 □
0 2 1 2 6 5 9 □
0 0 3 0 7 □
0 0 2 0 8 □
0 1 2 1 9 6 □

Pk Vertex (edge) List

0 8 1 2 □
1 5 4 □
2 7 3 □
3 5 7 □
4 9 7 2 □

vertex # 1 2 3 4 5 6 7 8 9

selected

connected

o f subtrees 1 2 1 1 2 0 3 1 1

subtree list 0 0,4 2 1 1,3 - 2,3,4 0 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

2.7.8 Step 7 - Solution Tree Output

Before the components o f R can be output, the solution must be examined for

non-Steiner vertex leaves. Any such leaf that is found in the solution tree R can be

discarded. These vertices can be discarded without damage to the solution tree R because

the only vertex that can be a valid leaf in a tree created with this algorithm is a Steiner

vertex.

This is due to the nature o f the problem being solved, namely, that there be no

edges connecting Steiner vertices to each other on the graph G. This requires that each

pair o f Steiner vertices be connected in R by at least one non-Steiner vertex, making such

non-Steiner vertices the 'root' vertex o f that particular subtree Pk when it is generated by

this algorithm. These 'root' vertices are themselves connected to form the solution tree R

through the addition o f single edges and\or subtrees consisting o f one new non-Steiner

vertex and two edges leading to non-Steiner vertices previously selected as members of

other subtrees in the SL.

Due to this process it can be seen that every Steiner vertex in the solution tree R

will be a leaf. It can also be seen that every non-Steiner vertex in R will have at least two

neighbors in the tree when these vertices actually serve to connect the Steiner vertices

present. Therefore, any non-Steiner vertex in R that is a leaf does not connect any two

subtrees in the SL nor does it connect a Steiner vertex to R. Thus, such vertices can be

eliminated from R safely.

To check for, and delete, any non-Steiner vertex leaves in the solution tree R,

perform the following substeps:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

1) For every non-Steiner vertex NSi marked connected in the SCT:

a) I f NS,- is a member o f two or more subtrees then NSi cannot be a leaf

in the solution tree R.

b) If NSi is a member o f only one subtree Px then:

i) If Px is composed o f more than two vertices and one edge

then NSi is not a leaf in R.

ii) If Px is composed o f two vertices and one edge only then NSi

is a leaf Lf and can be listed for deletion from R.

c) If any leaves Lf were found in the previous substep then delete them

from the solution tree R as follows:

i) In the SCT, for Lf:

■ From the subtree list, let Px represent the subtree

containing the leaf Lf to be deleted and let Wif

represent the second vertex in Px.

■ Unmark the vertex as selected.

■ Unmark the vertex as connected.

■ Set the number o f subtrees count to zero.

■ Delete the subtree list.

ii) In the SCT, for Ŵ -:

■ Decrement the number o f subtrees count.

■ Delete the subtree number x (representing the subtree

Px) from the subtree list.

iii) In the SL, delete Px.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

To generate the Solution Tree R, do the following:

1) Using the SCT:

a) Every vertex marked connected is a member o f R.

b) For every vertex marked connected, add the numbers in its subtree list

to a temporary subtree list TSL i f they are not already members of

TSL.

2) While the temporary subtree list TSL is not empty, generate the list o f edges

in R as follows:

a) Get a subtree number k (for Pk) from the TSL.

b) From Pk in the SL, designate the first vertex as root and the remaining

vertices as Wj.

c) For every Wj in Pk, generate the vertex pairs representing the edges in

R as (root, Wj).

2.8 Performance Analysis

This section is under complete review. The original analysis showed this

algorithm to be 0(E) in the worst case. However, this algorithm has been modified since

the original version was developed. With the corrections and alterations made to the

original algorithm taken into account, it appears that the Steiner Tree Algorithm as

presented in this work is 0(VE) in the worst (and best) case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81

Vertices Edges

1,2,3,4,5,7,8,9
(8,1)
(8,2)
(5,4)
(7,3)
(5.7)
(9.7)
(9,2)

Figure 2.2 The solution tree R generated by the algorithm.

2.9 Future Work

Further testing is required to determine when an optimal solution can be generated

as well as under what conditions and to determine the types o f sub optimal solutions that

can be generated including bounds on how far from optimal such solutions can be.

Additional future work involves developing better methods of choosing the non-Steiner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82
vertex to accompany the single Steiner vertex chosen dining the first step and the

choosing the non-Steiner vertex and edges in the last step o f the algorithm. Research to

reduce the bookkeeping effort and overhead is also being considered for the future.

2.10 Conclusion

We have presented and analyzed a relatively simple bookkeeping algorithm for

determining the shortest tree that connects the Steiner vertices in a given graph where the

edges are o f unit length. From the testing done, it has been found that this algorithm will

often yield an near-optimal solution when care is taken in the labeling o f the vertices.

Variation from optimality has been found to occur primarily from poor vertex numbering

schemes and from poor vertex selections made when adding individual Steiner vertices to

the SL during the Steiner vertex selection step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A

A SECOND WORKED EXAMPLE OF THE STEINER ALGORITHM

7 8 9

o -

11

- o -

12

- o -

13

- o

T
3

T
15

- o -

16

- o

10

14

Figure A. 1 The graph G for the appendix A example further illustrating the operation
of the Steiner algorithm.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

Table A. 1 The Steiner Node List (SNL), the Non-Steiner Node List (NSNL), the Pick
List (PL), and the Subtree List (SL) after the first Steiner Node selection step has been
completed.

Si Edge List
1 7 □
2 6 10 □
3 11 15 □
4 14 16 □

#S # v #sel #con NSi Edge List
0 2 1 0 5 6 8 □
1 3 1 0 6 2 5 9 □
1 3 1 0 7 1 8 11 □
0 4 1 0 8 5 7 9 12 □
0 4 0 0 9 6 8 10 13 □
1 3 0 0 10 2 9 14 □
1 3 0 0 11 3 7 12 □
0 4 0 0 12 8 11 13 15 □
0 4 0 0 13 9 12 14 16 □
1 3 0 0 14 4 10 13 □
1 3 0 0 15 3 12 16 □
1 3 0 0 16 4 13 15 □

PL 10 11 14 15 16 □

Pk Vertex (edge) List
0 5 1 □
1 □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

Table A.2 The Select/Connect Table (SCT) after the first Steiner Node selection step
has been completed.

vertex # 1 2 3 4 5 6 7 8 9 10

selected

connected
o f subtrees 1 0 0 0 1 0 0 0 0 0
subtree list 0 0 - - 0 - - - - -

vertex # 1 2 3 4 11 12 13 14 15 16

selected
connected

of subtrees 1 0 0 0 0 0 0 0 0 0
subtree list 0 0 - - - - - - - -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

Table A.3 The data structures (SNL, NSNL, PL, and SL) after the second Steiner Node
selection step has been completed.

Si Edge List
1 7 □
2 10 □
3 11 15 □
4 14 16 □

#S # v #sel #con NSi Edge List
0 2 2 0 5 6 8 □
0 2 2 0 6 5 9 □
1 3 1 0 7 1 8 11 □
0 4 1 0 8 5 7 9 12 □
0 4 1 0 9 6 8 10 13 □
1 3 1 0 10 2 9 14 □
1 3 0 0 11 3 7 12 □
0 4 0 0 12 8 11 13 15 □
0 4 0 0 13 9 12 14 16 □
1 3 0 0 14 4 10 13 □
1 3 0 0 15 3 12 16 □
1 3 0 0 16 4 13 15 □

PL 10 11 14 15 16 □

Pk Vertex (edge) List
0 5 1 □
1 6 2 □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

Table A.4 The Select/Connect Table (SCT) after the second Steiner Node selection step
has been completed.

vertex # 1 2 3 4 5 6 7 8 9 10

selected s

connected
o f subtrees 1 1 0 0 1 l 0 0 0 0
subtree list 0 1 - - 0 l - - - -

vertex # 1 2 3 4 11 12 13 14 15 16

selected

connected
o f subtrees 1 1 0 0 0 0 0 0 0 0
subtree list 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

88

Table A.5 The data structures (SNL, NSNL, PL, and SL) after the third Steiner Node
selection step has been completed.

Si Edge List
1 7 □
2 10 □
3 15 □
4 14 16 □

#S # v #sel #con NSi Edge List
0 2 2 0 5 6 8 □
0 2 2 0 6 5 9 □
1 3 2 0 7 1 8 11 □
0 4 1 0 8 5 7 9 12 □
0 4 1 0 9 6 8 10 13 □
1 3 1 0 10 2 9 14 □
0 2 1 0 11 7 12 □
0 4 1 0 12 8 11 13 15 □
0 4 0 0 13 9 12 14 16 □
1 3 0 0 14 4 10 13 □
1 3 1 0 15 3 12 16 □
1 3 0 0 16 4 13 15 □

PL 14 15 16 □

Pk Vertex (edge) List
0 5 1 □
1 6 2 □
2 11 3 □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

Table A.6 The Select/Connect Table (SCT) after the third Steiner Node selection step
has been completed.

vertex # 1 2 3 4 5 6 7 8 9 10

selected S

connected
of subtrees 1 l l 0 1 1 0 0 0 0
subtree list 0 l 2 - 0 1 - - - -

vertex # 1 2 3 4 11 12 13 14 15 16

selected V"

connected
of subtrees 1 1 1 0 1 0 0 0 0 0
subtree list 0 1 2 - 2 - - - - -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90

Table A. 7 The data structures (SNL, NSNL, PL, and SL) after the fourth Steiner Node
selection step has been completed.

Si Edge List
1 7 □
2 10 □
3 15 □
4 16 □

#S # v #sel #con NSi Edge List
0 2 2 0 5 6 8 □
0 2 2 0 6 5 9 □
1 3 2 0 7 1 8 11 □
0 4 1 0 8 5 7 9 12 □
0 4 1 0 9 6 8 10 13 □
1 3 0 10 2 9 14 □
0 2 1 0 11 7 12 □
0 4 1 0 12 8 11 13 15 □
0 4 1 0 13 9 12 14 16 □
0 2 1 0 14 10 13 □
1 3 1 0 15 3 12 16 □
1 3 1 0 16 4 13 15 □

PL 15 16 □

Pk Vertex (edge) List
0 5 1 □
1 6 2 □
2 11 3 □
3 14 4 □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

91

Table A.8 The Select/Connect Table (SCT) after the fourth Steiner Node selection step
has been completed.

vertex # 1 2 3 4 5 6 7 8 9 10

selected S

connected
o f subtrees 1 1 1 1 1 l 0 0 0 0
subtree list 0 1 2 3 0 l - - - -

vertex # 1 2 3 4 11 12 13 14 15 16

selected v '

connected
o f subtrees 1 0 0 1 0 0
subtree list 2 - - 3 - -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table A.9 The data structures (SNL, NSNL, PL, and SL) after the single edge
connection step has been completed.

Si Edge List
1 7 □
2 10 □
3 15 □
4 16 □

#S # v #sel #con NSi Edge List
0 1 2 0 5 8 □
0 1 2 0 6 9 □
1 3 2 1 7 1 8 11 □
0 4 1 1 8 5 7 9 12 □
0 4 1 1 9 6 8 10 13 □
1 3 1 10 2 9 14 □
0 2 1 0 11 7 12 □
0 4 1 0 12 8 11 13 15 □
0 4 1 0 13 9 12 14 16 □
0 2 1 0 14 10 13 □
1 3 1 0 15 3 12 16 □
1 3 1 0 16 4 13 15 □

Pk Vertex (edge) List
0 5 1 □
1 6 2 □
2 11 3 □
3 14 4 □
4 5 6 □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

Table A. 10 The Select/Connect Table (SCT) after the single edge connection step has
been completed.

vertex # 1 2 3 4 5 6 7 8 9 10

selected

connected
o f subtrees 1 1 1 1 2 2 0 0 0 0
subtree list 0 1 2 3 0,4 1,4 - - - -

vertex # 1 2 3 4 11 12 13 14 15 16

selected
connected

o f subtrees 1 0 0 1 0 0
subtree list 2 - - 3 - -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

Table A. 11 The data structures (SNL, NSNL, PL, and SL) after the first non-Steiner
vertex selection step has been completed.

Si Edge List
1 □
2 10 □
3 15 □
4 16 □

#S # v #sel #con NSi Edge List
0 1 2 0 5 8 □
0 1 2 0 6 9 □
0 1 2 1 7 8 □
0 4 2 2 8 5 7 9 12 □
0 4 1 1 9 6 8 10 13 □
1 3 2 1 10 2 9 14 □
0 1 2 0 11 12 □
0 4 1 0 12 8 11 13 15 □
0 4 1 0 13 9 12 14 16 □
0 2 1 0 14 10 13 □
1 3 1 0 15 3 12 16 □
1 3 1 0 16 4 13 15 □

Pk Vertex (edge) List Pk Vertex (edge) List
0 5 1 □ 4 5 6 □
1 6 2 □ 5 7 1 11 □
2 11 3 □
3 14 4 □

PL 10 □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95

Table A. 12 The Select/Connect Table (SCT) after the first non-Steiner vertex selection
step has been completed.

Vertex # 1 2 3 4 5 6 7 8 9 10

selected s y s

connected s s s
o f subtrees 2 1 1 1 2 2 1 0 0 0
subtree list 0,5 1 2 3 0.4 1,4 5 - - -

vertex # 1 2 3 4 11 12 13 14 15 16

selected

connected v '

o f subtrees 2 0 0 1 0 0
subtree list 2,5 - - 3 - -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

Table A. 13 The data structures (SNL, NSNL, PL, and SL) after the second non-Steiner
vertex selection step has been completed.

Si Edge List
1 □
2 □
3 15 □
4 16 □

#S # v #sel #con NSi Edge List
0 1 2 0 5 8 □
0 1 2 0 6 9 □
0 1 2 1 7 8 □
0 4 2 2 8 5 7 9 12 □
0 4 2 2 9 6 8 10 13 □
0 1 2 1 10 9 □
0 1 2 0 11 12 □
0 4 1 0 12 8 11 13 15 □
0 4 1 0 13 9 12 14 16 □
0 1 2 0 14 13 □
1 3 1 0 15 3 12 16 □
1 3 1 0 16 4 13 15 □

Pk Vertex (edge) List Pk Vertex (edge) List
0 5 1 □ 4 5 6 □
1 6 2 □ 5 7 1 11 □
2 11 3 □ 6 10 2 14 □
3 14 4 □

PL 10 □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

Table A. 14 The Select/Connect Table (SCT) after the second non-Steiner vertex
selection step has been completed.

vertex # 1 2 3 4 5 6 7 8 9 10

selected

connected s s
of subtrees 2 2 1 1 2 2 1 0 0 1
subtree list 0,5 1,6 2 3 0,4 1,4 5 - - 6

vertex # 1 2 3 4 11 12 13 14 15 16

selected

connected
o f subtrees 2 0 0 2 0 0
subtree list 2,5 - - 3,6 - -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Vertices Edges

(7,1)
1,2,3,4, (7,11)
5,6,7, (11,3)

10,11,14 (5,1)
(5,6)
(6,2)

(10,2)
(10,14)
(14,4)

Figure A.2 The solution tree R generated by the algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY

[1] S. G. Akl. An optimal algorithm for parallel selection. Information Processing
Letters, 19:47-50, 1984.

[2] S. G. Akl. Parallel selection in 0(log log n) time using 0(n/log log n) processors.
Technical Report 88-221, Queen's University, Department o f Computing and
Information Science, Kingston, Ontario, 1988.

[3] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Taijan. Time bounds
for selection. Journal o f Computer Science and System Sciences, 7(4):448-461,
1973.

[4] P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree
problem. Proceedings o f the 3rd ACM/SIAMSymposium on the Discrete
Algorithms, 1992.

[5] R. J. Cole. An optimally efficient selection algorithm. Information Processing
Letters, 26:295-299, 1988.

[6] E. W. Dijkstra. A note on two problems in connection with graphs. Numerical
Mathematics, 1, 1959.

[7] R. W. Floyd and R. L. Rivest. Expected time bounds for selection.
Communications o f the ACM, 18:165—172, 1975.

[8] M. R. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete geometric
problems. Proceedings o f the 8th Annual ACM Symposium on the Theory o f
Computing}, 1976.

[9] R. Kou and K. Makki. An even faster approximation algorithm for the Steiner
problem in graphs. Congressus Numerantium, 59, 1987.

[10] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees.
Acta Informatica, 15, 1981.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

[11] K. Makki. A more efficient approximation algorithm for the Steiner tree in
graphs. Technical Report CSR90-055, University ofNevada, Las Vegas, 1990.

[12] K. Makki. A new approximation algorithm for the Steiner tree problem.
Congressus Numerantium, 84, 1991.

[13] U. Manber. Introduction to Algorithms, A Creative Approach. Addison-Wesley
Publishing Company Inc., 1989.

[14] K. Makki and N. Pissinou. The Steiner tree problem with minimum number o f
vertices in graphs. Proceedings o f the IEEE Second Great Lakes Symposium on
VLSI}, February 1992.

[15] E. M. Reingold, J. Nierergelt, and N. Deo. Combinatorial Algorithms Theory and
Practice. Prentice-Hall Publishing Company Inc., 1977.

[16] V. J. Rayward-Smith. The computation o f nearly minimal Steiner trees in graphs.
International Journal o f Mathematics, Education, Science and Technology, 14,
1983.

[17] V. J. Rayward-Smith and A. Clare. On finding Steiner vertices. Networks, 16,
1986.

[18] Q. F. Stout. Sorting, merging, selecting, and filtering on tree and pyramid
machines. Proceedings o f the 1983 International Conference on Parallel
Processing, IEEE Computer Society, 1983, pages 214-221.

[19] H. Takahashi and A. Matsuyama. An approximation solution for the Steiner
problem in graphs. Math Japonica, 24, 1980.

[20] B. Waxman and M. Imase. Worst-case performance on Rayward-Smith's Steiner
tree heuristic. Information Processing Letters, 29, 1988.

[21] P. Winter. Steiner problem in networks: A survey. Networks, 17, 1987.

[22] Y. F. Wu, P. Widmayer, and C.K. Wong. A faster approximation algorithm for
the Steiner problem in graphs. Acta Informatica, 23, 1986.

[23] A. Z. Zelikovsky. The 11/6 approximation algorithms for the Steiner problem on
networks. Information and Computation, 1992.

[24] J. Howe and Kia Makki. A Simple and Adaptable Parallel Algorithm for the
Selection Problem. (Unpublished) University ofNevada, Las Vegas, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101

[25] J. Howe and Kia Makki. An Algorithm for Determining the Shortest Tree
Connecting Steiner Nodes with No Direct Connections. (Unpublished) University o f
Nevada, Las Vegas, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

VITA

Graduate College
University ofNevada, Las Vegas

John Gerard Howe

Home Address:
4146 E. Hannon Ave.
Las Vegas, NV 89121

Degrees:
Bachelor o f Science, Civil Engineering, 1982
University ofNevada, Reno

Publications:

J. Howe and Kia Makki. A Simple and Adaptable Parallel Algorithm for the Selection
Problem. (Unpublished) University ofNevada, Las Vegas, 1994.

J. Howe and Kia Makki. An Algorithm for Determining the Shortest Tree Connecting
Steiner Nodes with No Direct Connections. (Unpublished) University ofNevada, Las
Vegas, 1996.

Thesis Title: Two New Algorithms For Classical Problems in Computer Science

Thesis Examination Committee:
Chairperson, Dr. Evangelos Yfantis, Ph.D.
Committee Member, Dr. John Minor, Ph.D.
Committee Member, Dr. Ajoy Datta, Ph.D.
Graduate Faculty Representative, Dr. Eugene McGaugh, Ph.D.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

